Nối các biểu thức có cùng kết quả:
(a+ b) x c |
a x (b +c) |
a x (b - c) |
a x b – a x c |
a x b – a x c |
a x b + a x c |
a x (b - c) |
a x c + b x c |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b) : c----a : c + b : c
a : c x b---(a x b) : c
a : b : c----a : (c x b)
a : c – b : c-------(a – b) : c
a: (x+a)(x+b)
\(=x^2+bx+ax+ab\)
\(=x^2+x\left(a+b\right)+ab\)
b: \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left(x^2+ax+bx+ab\right)\left(x+c\right)\)
\(=x^3+x^2c+ax^2+axc+bx^2+bxc+abx+abc\)
\(=x^3+x^2\left(a+b+c\right)+x\left(ab+bc+ca\right)+abc\)
a: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3x^2y+y^3\)
\(=6x^2y+2y^3\)
\(=2y\left(3x^2+y^2\right)\)
a. \(VT=\left(x+a\right)\left(x+b\right)=x^2+ã+bx+ab=x^2+\left(a+b\right)x+ab=VP\)
B. \(VT=\left(x+a\right)\left(x+b\right)\left(x+c\right)=\left[\left(x+a\right)\left(x+b\right)\right].\left(x+c\right)\)
\(=\left[\left(x^2+\left(a+b\right)x\right)+ab\right].\left(x+c\right)=x^3+x^2c+\left(a+b\right)x^2+c\left(a+b\right)x+abx+abc\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc=VP\)
a) \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left[x^2+\left(a+b\right)x+ab\right]\left(x+c\right)\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)
b) \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
c) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-bc^2\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ca\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Nhầm đoạn cuối là \(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
\(\left(a+b\right)\times c=a\times c+b\times c\)
\(a\times\left(b+c\right)=a\times b+a\times c\)
\(a\times\left(b-c\right)=a\times b-a\times c\)
\(a\times b-a\times c=a\times\left(b-c\right)\)
( a+b)xc------axc+bxc
a x ( b + c)----- a x b + a x c
a x ( b-c )------ a x b - a x c
a x b-a x c-------a x ( b - c )