Chứng minh rằng: \(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-...-\frac{1}{7^{96}}+\frac{1}{7^{98}}-\frac{1}{7^{100}}<\frac{1}{50}\)
Ai trả lời nhanh và đúng nhất tôi sẽ tích cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A=\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(49A=1-\frac{1}{7^2}+\frac{1}{7^4}-...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(49A+A=\left(1-\frac{1}{7^2}+\frac{1}{7^4}-...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\right)+\left(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\right)\)
\(50A=1-\frac{1}{7^{100}}\)
\(A=\frac{1-\frac{1}{7^{100}}}{50}< \frac{1}{50}\) ( cùng mẫu, tử bé hơn nên bé hơn )
Vậy \(A< \frac{1}{50}\)
Chúc bạn học tốt ~
Đặt \(S=\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(\Rightarrow7^2S=1-\frac{1}{7^2}+\frac{1}{7^4}-\frac{1}{7^6}+....+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(\Rightarrow49S=1-S-\frac{1}{7^{100}}\)
\(\Rightarrow49S+S=1-S-\frac{1}{7^{100}}+S\)
\(\Rightarrow50S=1-\frac{1}{7^{100}}<1\Rightarrow50S<1\Rightarrow S<\frac{1}{50}\left(đpcm\right)\)
M = 512 - 512/2 - .... - 512/2^10
= 2^9 - 2^9 / 2 - 2^9/2^2 - ...2^9/2^10
= 2^9 - 2^8 - 2^7 - 2^6 -.... - 1/2
2M = 2^10 - 2^9 - 2^8 - .... - 1
2M - M = 2^10 - 2^9 - 2^8 -... -1 - 2^9 + 2^8 + 2^7 +... + 1 + 1/2
M = 2^10 - 2.2^9 + 1/2
M = 2^10 - 2^10 + 1/2
M = 1/2
Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(\Rightarrow49A=1-\frac{1}{7^2}+...+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n}}+..+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(\Rightarrow49A+A=50A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{50}=\frac{1}{50}-\frac{1}{7^{100}.50}< \frac{1}{50}\left(ĐPCM\right)\)
Tham khảo nha bạn :
Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến
\(A=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(\Rightarrow7^2.A=\frac{1}{1}-\frac{1}{7^2}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(\Rightarrow49A+A=1-\frac{1}{7^{100}}\)
\(50A=1-\frac{1}{7^{100}}
đề có thiếu hay thừa gì ko nhỉ? tại cái này hình như vế trái gồm 2 dãy quy luật.dãy có các số hạng là bội của 1/7 ko thấy số cuối =="
Bn cần gấp ko?