Giá trị nguyên lớn nhất của x thõa mãn;\(\left(x-5\right)\times\left(x+3\right)<0\)là x=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{5}{x}=\frac{y}{-3}\)
<=>xy=-15
Mà x,y thuộc Z
=>(x;y)=(-3;5);(3;-5)(5;-3)(-5;3)(15;-1)(-15;1)(1;-15)(-1;15)
Từ đó ta lần lượt xét các hiệu của x-y
=>giá trị lớn nhất của x-y là 16<=>x=15;y=-1 và x=1;y=-15
Do x+ y= 1 nên
S = 16 x 2 y 2 + 12 ( x + y ) ( x 2 - x y + y 2 ) + 34 x y = 16 x 2 y 2 + 12 ( x + y ) 2 - 3 x y + 34 x y , d o x + y = 1 = 16 x 2 y 2 - 2 x y + 12
Đặt t= xy . Do x≥ 0 ; y≥0 nên
0 ≤ x y ≤ ( x + y ) 2 4 = 1 4 ⇒ t ∈ 0 ; 1 4
Xét hàm số f(t) = 16t2- 2t + 12 trên [0 ; 1/4].
Ta có f’ (t) = 32t- 2 ; f’(t) =0 khi t= 1/ 16 .
Bảng biến thiên
Từ bảng biến thiên ta có:
m i n 0 ; 1 4 f ( t ) = f ( 1 16 ) = 191 16 ; m a x 0 ; 1 4 f ( t ) = f ( 1 4 ) = 25 2
Vậy giá trị lớn nhất của S là 25/2 đạt được khi
x + y = 1 x y = 1 4 ⇔ x = 1 2 y = 1 2
giá trị nhỏ nhất của S là 191/ 16 đạt được khi
Chọn A.
Ta có : \(x^2+y^2=4< =>x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
\(< =>4\ge\frac{\left(x+y\right)^2}{2}< =>\left(x+y\right)^2\le4.2=8< =>x+y\le\sqrt{8}\)
Hay \(x+y\le\sqrt{8}\)
Dấu = xảy ra khi và chỉ khi \(x=y=\sqrt{2}\)
Vậy GTLN của P = \(\sqrt{8}\)đạt được khi và chỉ khi \(x=y=\sqrt{2}\)