K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left|2x+1\right|=\left|x+6\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x+6\\2x+1=-x-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{3}\end{matrix}\right.\)

4 tháng 12 2021

ĐKXĐ: \(x\in R\)

\(\sqrt{4x^2+4x+1}=\sqrt{x^2+12x+36}\\ \Leftrightarrow\left|2x+1\right|=\left|x+6\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=x+6\\2x+1=-x-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{3}\end{matrix}\right.\)

20 tháng 5 2023

`a)\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12`     `ĐK: x >= 0`

`<=>\sqrt{3x}-10\sqrt{3x}+21\sqrt{3x}=12`

`<=>12\sqrt{3x}=12`

`<=>\sqrt{3x}=1`

`<=>3x=1<=>x=1/3` (t/m)

`b)5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36`   `ĐK: x >= -1`

`<=>15\sqrt{x+1}-4\sqrt{x+1}+\sqrt{x+1}=36`

`<=>12\sqrt{x+1}=36`

`<=>\sqrt{x+1}=3`

`<=>x+1=9`

`<=>x=8` (t/m)

NV
9 tháng 7 2019

a/ \(=\sqrt{\sqrt{2}-1}-\left(\sqrt{2}-1\right)\sqrt{\sqrt{2}+1}\)

\(=\sqrt{\sqrt{2}-1}\left(1-\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\right)\)

\(=2\sqrt{\sqrt{2}-1}\)

b/ \(\Leftrightarrow x^2-12x+36=6561\)

\(\Leftrightarrow x^2-12x-6525=0\)

\(\Leftrightarrow\left(x-87\right)\left(x+75\right)=0\Rightarrow\left[{}\begin{matrix}x=87\\x=-75\end{matrix}\right.\)

c/ \(\Leftrightarrow4x^2-12x+9=49\)

\(\Leftrightarrow4x^2-12x-40=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Hai câu b; c đều có thể giải bằng cách sử dụng hằng đẳng thức, nhưng cần phá trị tuyệt đối tốn thời gian, tốt nhất là bình phương cho lẹ

9 tháng 7 2019

\(\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}-\sqrt{2\sqrt{2}+2}\)

\(Đat:A=\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}\Rightarrow A^2=\sqrt{2}-1+\sqrt{2}+1+2\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}+2=2\left(\sqrt{2}+1\right)\Rightarrow A=\sqrt{2\sqrt{2}+2}\left(vì:\sqrt{\sqrt{2}-1};\sqrt{\sqrt{2}+1}>0\right)\) \(\Rightarrow\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}-\sqrt{2\sqrt{2}+2}=\sqrt{2\sqrt{2}+2}-\sqrt{2\sqrt{2}+2}=0\)

\(b,\sqrt{x^2-12x+36}=\sqrt{\left(x-6\right)^2}=\left|x-6\right|=81\Leftrightarrow\left[{}\begin{matrix}x-6=81\\x-6=-81\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=87\\x=-75\end{matrix}\right..Vậy:x\in\left\{87;-75\right\}\)

\(c,\sqrt{4x^2-12x+9}=\sqrt{\left(2x-3\right)^2}=7\Leftrightarrow\left|2x-3\right|=7\Leftrightarrow\left[{}\begin{matrix}2x-3=-7\\2x-3=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-4\\2x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right..Vậy:x\in\left\{-2;5\right\}\)

23 tháng 7 2019

a) \(x+\sqrt{4x^2-4x+1}=2\)

\(\Leftrightarrow x+\sqrt{\left(2x-1\right)^2}=2\)

\(\Leftrightarrow x+|2x-1|=2\)

\(TH1:x\ge0\)

\(\Leftrightarrow x+2x-1=2\)

\(\Leftrightarrow3x-1=2\)

\(\Leftrightarrow3x=3\)

\(\Leftrightarrow x=1\left(TM\right)\)

\(TH2:x< 0\)

\(\Leftrightarrow x-2x-1=2\)

\(\Leftrightarrow-x-1=2\)

\(\Leftrightarrow-x=3\)

\(\Leftrightarrow x=-3\left(TM\right)\)

Vậy:...

b) \(3x-1-\sqrt{4x^2-12x+9}=0\)

\(\Leftrightarrow3x-1-\sqrt{\left(2x-3\right)^2}=0\)

\(\Leftrightarrow3x-1-|2x-3|=0\)

\(TH1:x\ge0\)

\(\Leftrightarrow3x-1-2x+3=0\)

\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\left(KTM\right)\)

\(TH2:x< 0\)

\(\Leftrightarrow3x-1+2x-3=0\)

\(\Leftrightarrow5x-4=0\Leftrightarrow x=\frac{4}{5}\left(KTM\right)\)

Vậy: pt vô nghiệm

Học Tốt!!!

17 tháng 9 2021

d. \(\sqrt{9x^2+12x+4}=4\)

<=> \(\sqrt{\left(3x+2\right)^2}=4\)

<=> \(|3x+2|=4\)

<=> \(\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

c: Ta có: \(\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2.5}=\dfrac{2}{7}\)

\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)

\(\Leftrightarrow x=1\)

6 tháng 10 2023

a)√x2−9 - 3√x−3 =0

<=> (√x-3)(√x+3)-3√x-3=0

<=> (√x-3)(√x+3-3)=0

<=> (√x-3)√x=0

<=> √x-3=0

<=>x=9

b)√4x2−12x+9=x - 3

<=> √(2x -3)=x-3

<=> 2x-3=x-3

<=>2x-x=-3+3

<=>x=0

c)√x2+6x+9=3x-1

<=> √(x+3)=3x-1

<=> x+3=3x-1

<=> -2x=-4

<=>  x=2

Nhớ cho mình 1 tim nha bạn

HQ
Hà Quang Minh
Giáo viên
7 tháng 10 2023

Sau em nên gõ các kí hiệu toán học ở phần Σ để mọi người dễ dàng đọc hơn nhé.

3: Ta có: \(\sqrt{4x+1}=x+1\)

\(\Leftrightarrow x^2+2x+1=4x+1\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

4: Ta có: \(2\sqrt{x-1}+\dfrac{1}{3}\sqrt{9x-9}=15\)

\(\Leftrightarrow3\sqrt{x-1}=15\)

\(\Leftrightarrow x-1=25\)

hay x=26

5: Ta có: \(\sqrt{4x^2-12x+9}=7\)

\(\Leftrightarrow\left|2x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

`a, <=> 5/3 . 3sqrt(x^2+2) + 3/2.2sqrt(x^2+2)-7sqrt6=sqrt(x^2+2)`

`= (5+3-1)sqrt(x^2+2)=7sqrt6`

`<=> 7sqrt(x^2+2)=7sqrt6`.

`<=> x^2+2=36`.

`<=> x^2=34`.

`<=> x=+-sqrt(34)`.

Vậy...

`b, sqrt(4x^2-12x+9)-6=0`

`<=> |2x-3|=6`.

`@ x >=3/2 <=> 2x-3=6.`

`<=> x=9/2 (tm)`.

`@x <3/2 <=> 3-2x=6`

`<=> 2x=-3`

`<=> x=-3/2.`

Vậy...

18 tháng 12 2020

ĐKXĐ: \(x\ge1\).

Phương trình đã cho tương đương:

\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)

\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).

Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).

Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).

Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).

Vậy...

 

 

 

18 tháng 12 2020

Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!