Một lớp có 30 nam và 20 nữ hỏi có bao nhiêu cách chia số học sinh nam và học sinh nữ thành các tổ sao cho số học sinh nam và số học sinh nữ bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tổ là x
24 ⋮x
20 ⋮ x
ƯC(20,24)=4
Số học sinh nam mỗi tổ là : 24:4=6(học sinh)
Số học sinh nữ mỗi tổ là : 20:4=5(học sinh)
Gọi số tổ là a ( a ∈ N* )
Theo đề ra , ta có :
27 ⋮ a và 18⋮a
⇒a ∈ ƯC(27,18)⇒a ∈ ƯC(27,18)
27 = 33
18 = 2 . 32
ƯCLN(24,18)=2.3=6ƯCLN(24,18)= 32 = 9
ƯC( 27,18 ) =Ư( 9 )={ 1;3;9 }ƯC(27,18)=Ư(9)={1;3;9}
Vậy có tất cả 3 cách chia .
Vì : số học sinh mỗi tổ ít nhất
⇒a=ƯCLN(27,18)
Mà : ƯCLN(27,18) = 9 ⇒a = 9 ƯCLN(27,18) ⇒a = 9
Vậy chia 9 thì số học sinh ở mỗi tổ là ít nhất .
ƯCLN (27;18)= 9
Ư(9)= {1;3;9}
=> Có 2 cách chia để số học sinh nam và nữ mỗi tổ như nhau.
C1: Cách 1 là mỗi tổ có 3 nam 2 nữ (9 tổ)
C2: Mỗi tổ có 9 nam 6 nữ (3 tổ)
Gọi số tổ phải chia là a ( tổ ). ( a \(\in\)\(ℕ^∗\); a > 1 )
Vì phải chia đều số hs vào các tổ nên :
18 \(⋮\)a 24 \(⋮\)a \(\Rightarrow\)a \(\in\)ƯC ( 18 ; 24 )
Để mỗi tổ có số hs ít nhất thì a phải lớn nhất \(\Rightarrow\)a \(\in\)ƯCLN ( 18 ; 24 )
có : 18 = 22. 7 24 = 23. 3
ƯCLN ( 18 ; 24 ) = 22= 4.
Vậy phải chia đều số hs vào 4 tổ.
Gọi số tổ của lp đó là a ( a thuộc N* )
=> a là ƯC(16;20)
Ta có
16 = 24
20 = 22. 5
=> ƯCLN ( 16;20) = 22 = 4
=> ƯC (16;20) = { 1 ; 2 ; 4 }
Vậy có 3 cách chia tổ
Chia số học sinh của lp đó thành 4 tổ thì mỗi tổ sẽ có số học sinh ít nhất
Gọi số cách chia tổ là a (cách) (a ϵ N*)
Vì khi chia 20 nam, 24 nữ vào các tổ thì vừa đủ nên 20 ⋮ a ; 24 ⋮ a
=> a ϵ ƯC (20;24)
20 = 22.5
24 = 23.3
=> ƯCLN(20;24) = 22 = 4
=> ƯC(20;24) = Ư(4) = { 1; 2; 4 } Có 3 ước
Vậy có 4 cách để chia học sinh vào các tổ.
Để mỗi tổ có số học sinh ít nhất thì số tổ phải nhiều nhất
Nên khi chia học sinh thành 4 tổ thì số học sinh ít nhất
Vậy với cách chia học sinh thành 4 tổ thì số học sinh ít nhất.
mọi người làm giúp mik đi