K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2021

hãy giải giùm tôi 35 320 -x x 72= 13 072

a: Ta có: \(\left(x^2-2x+2\right)\left(x^2-2\right)\left(x^2+2x+2\right)\left(x^2+2\right)\)

\(=\left(x^4-4\right)\left[\left(x^2+2\right)^2-4x^2\right]\)

\(=\left(x^4-4\right)\left(x^4+4x^2+4-4x^2\right)\)

\(=\left(x^4-4\right)\cdot\left(x^4+4\right)\)

\(=x^8-16\)

b: Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2+3x^2-3x\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-x^2+2x-1+3x^2-3x\left(x^2-1\right)\)

\(=3x^2+4x-3x^3+3x\)

\(=-3x^3+3x^2+7x\)

9 tháng 12 2017

đây là phân số hay sao bn

m: \(=\left(\dfrac{2x}{\left(x-1\right)\left(x+1\right)}+\dfrac{x-1}{2\left(x+1\right)}\right)\cdot\dfrac{2x}{x+1}-\dfrac{3}{x-1}\)

\(=\dfrac{4x+x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2x}{x+1}-\dfrac{3}{x-1}\)

\(=\dfrac{\left(x+1\right)^2\cdot x}{\left(x-1\right)\left(x+1\right)^2}-\dfrac{3}{x-1}=\dfrac{x}{x-1}-\dfrac{3}{x-1}=\dfrac{x-3}{x-1}\)

p: \(=\left(\dfrac{-\left(x+2\right)}{x-2}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{-x^2\left(x-2\right)}{x\left(x-3\right)}\)

\(=\dfrac{-x^2-4x-4+4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)

\(=\dfrac{4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}=\dfrac{-4x^2\left(x-2\right)}{\left(x+2\right)\left(x-3\right)}\)

m: (x-y)(x^2-2xy+y^2)

=(x-y)*(x-y)^2

=(x-y)^3

=x^3-3x^2y+3xy^2-y^3

n: =-(x^3+x^2y-x-x^2y-xy^2+y)

=-x^3+x+xy^2-y

o: =-(x^3+x^2y^2-x^2-2xy-2y^3+2y)

=-x^3-x^2y^2+x^2+2xy+2y^3-2y

p: (1/2x-1)(2x-3)

=1/2x*2x-1/2x*3-2x+3

=x^2-3/2x-2x+3

=x^2-7/2x+3

q: (x-1/2y)(x-1/2y)

=(x-1/2y)^2

=x^2-xy+1/4y^2

r: (x^2-2x+3)(1/2x-5)

=1/2x^3-5x^2-x^2+10x+3/2x-15

=1/2x^3-6x^2+11,5x-15

14 tháng 11 2017

1) Tìm x và y biết

a) (2x+1)2 + y2 = 0

Ta có : \(\left(2x+1\right)^2\ge0;y^2\ge0\)

\(\Rightarrow\left(2x+1\right)^2+y^2\ge0\)

Để \(\left(2x+1\right)^2+y^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\y^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=0\end{matrix}\right.\)

b) x2 + 2x + 1 + (y-1)2 = 0

\(\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2=0\)

Lập luận tương tự câu a ,ta có :

\(\left(x+1\right)^2+\left(y-1\right)^2\ge0\)

\(\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

c) x2 - 2x + y2 + 4y + 5 = 0

\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

Lập luận tương tự 2 câu trên

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)