Bài 10:Trên cung nhỏ AB của (O), cho hai điểm C và D sao cho cung AB được chia thành 3 cung bằng nhau
Bán kính OC và OD cắt dây AB lần lượt tại E và F.
a) Hãy so sánh các đoạn thẳng AE và FB.
b) Chứng minh các đ thẳng AB và CD song song.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chứng minh được ∆OEA = ∆OFB => AE = FB
b, Chứng minh được O E F ^ = O C D ^ => AB//CD
Trả lời:
a) (O′) có OA là đường kính và E(O′) nên OE⊥AC
Tương tự với (O) ta có BC⊥AC nên OE//BC mà OO là trung điểm của AB
⇒E là trung điểm của AC⇒ OE=12BC.
Tương tự OF=12DB mà cung BC bằng cung BD nên BC=BD⇒OE=OF hay cung OE= cung OF.
~Học tốt!~
Gọi R đối xứng với D qua O. Khi đó DR là đường kính của (O) hay O là trung điểm RD.
Ta có: ^OBC = ^BFO (2 góc nội tiếp chắn (OA=(OB ) nên \(\Delta\)OCB ~ \(\Delta\)OBF (g,g)
Suy ra: OB2 = OC.OF hay OR2 = OC.OF. Từ đó: \(\Delta\)OCR ~ \(\Delta\)ORF (c.g.c) => ^ORC = ^OFR
Áp dụng hệ thức lượng đường tròn có: EG.EF = EA.EB = ED.ER nên tứ giác GDFR nội tiếp
Suy ra: ^OFR = ^GFR - ^GFO = ^GDR - ^GQO = ^DOQ. Từ đấy: ^ORC = ^DOQ
Do đó: CR // OQ. Xét trong \(\Delta\)DRC thấy: O trung điểm RD và OQ // CR cho nên OQ đi qua trung điểm CD (đpcm).