Giải các hệ pt sauu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Phương trình đã cho luôn có 2 nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+1}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=-2m+1\\4x_1x_2=2m-2\end{matrix}\right.\)
Cộng vế với vế:
\(\Rightarrow2\left(x_1+x_2\right)+4x_1x_2=-1\)
Đây là hệ thức liên hệ các nghiệm ko phụ thuộc m
Giải phương trình 4x - 2y = -5, ta có: \(\Rightarrow x=-\frac{5}{4}+\frac{1}{2}y\)
Thế giá trị đã có vào 2x + 3y =4, ta có: \(2\left(-\frac{5}{4}+\frac{1}{2}y\right)+3y=4\)
\(\Leftrightarrow-\frac{5}{2}+y+3y=4\)
\(\Leftrightarrow4y=\frac{13}{2}\Rightarrow y=\frac{13}{8}\)
Thay giá trị của y vào phương trình \(x=-\frac{5}{4}+\frac{1}{2}\times\frac{13}{8}\)
\(\Rightarrow x=-\frac{7}{16}\)
\(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2\)
Để phương trình có hai nghiệm phân biệt thì 2m-3<>0
hay m<>3/2
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\2x_1+2x_2=-2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\4x_1+4x_2=-4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=-4m+13\\4x_2=3x_1-11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\4x_2=\dfrac{-12m+36}{7}-\dfrac{77}{7}=\dfrac{-12m-41}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\x_2=\dfrac{-12m-41}{28}\end{matrix}\right.\)
Theo Vi-et, ta được: \(x_1x_2=\dfrac{m-1}{2}\)
\(\Leftrightarrow\dfrac{\left(4m-13\right)\left(12m+41\right)}{196}=\dfrac{m-1}{2}\)
\(\Leftrightarrow\left(4m-13\right)\left(12m+1\right)=98\left(m-1\right)\)
\(\Leftrightarrow48m^2+4m-156m-13-98m+98=0\)
\(\Leftrightarrow48m^2-250+85=0\)
Đến đây bạn chỉ cần giải pt bậc hai là xong rồi
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+10\)
\(=\left(2m-3\right)^2+1>0\)
Vậy pt có 2 nghiệm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\left(1\right)\\x_1x_2=\dfrac{m-1}{2}\left(2\right)\end{matrix}\right.\)
Ta có \(3x_1-4x_2=11\left(3\right)\)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}4x_1+4x_2=2-4m\\3x_1-4x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=13-4m\\x_2=\dfrac{1-2m}{2}-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{13-4m}{7}\\x_2=\dfrac{1-2m}{2}-\dfrac{13-4m}{7}\end{matrix}\right.\)
\(x_2=\dfrac{7-14m-26+8m}{14}=\dfrac{-19-6m}{14}\)
Thay vào (2) ta được \(\left(\dfrac{13-4m}{7}\right)\left(\dfrac{-19-6m}{14}\right)=\dfrac{m-1}{2}\)
\(\Leftrightarrow m=4,125\)
a: =>3x^2-6x-x+2=0
=>(x-2)(3x-1)=0
=>x=2 hoặc x=1/3
b: =>x^4-x-4x+4=0
=>x(x-1)(x^2+x+1)-4(x-1)=0
=>(x-1)(x^3+x^2+x-4)=0
=>x-1=0 hoặc x^3+x^2+x-4=0
=>x=1 hoặc x=1,15
a) Thay 1 vào m, ta có:
\(\hept{\begin{cases}x+1y=1+1\\1x-y=3\times1-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+1y=2\\x=2+y\end{cases}}\)
Thế giá trị đã cho vào phương trình:\(2+y+1y=2\)
\(\Leftrightarrow2+2y=2\)
\(\Leftrightarrow2y=0\Rightarrow y=0\)
Thay giá trị đó vào phương trình:\(x=2+0\Rightarrow x=2\)
9:Chứng minh cho bốn đỉnh của tứ giác cách đều một điểm nào đó
Chứng minh tứ giác có tổng 2 góc đối bằng 180°
Chứng minh từ hai đỉnh cùng kề một cạnh cùng nhìn một cạnh dưới hai góc bằng nhau. Nếu một tứ giác có tổng số đo hai góc đối bằng thì tứ giác đó nội tiếp được trong một đường tròn.
d: \(\Leftrightarrow\left\{{}\begin{matrix}-6x-18y+24z=18\\6x+8y-4z=10\\6x+3y+6z=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-10y+20z=28\\-15y+30z=30\\-x-3y+4z=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-30y+60z=84\\-30y+60z=60\\-x-3y+4z=3\end{matrix}\right.\)
Vậy: PT vô nghiệm