a, (x^2-2x+3) chia hết cho (x-1)
b, (3x-1) chia hết cho (x-4)
c, (x^2+3x+9) chia hết cho (x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhanh nhanh lẹ lẹ giúp chế coi. chế bị bắt chép phạt vì tội làm bài sai đây( làm sai 5 ý trên tổng thế 47 bài mỗi bài ít nhát 20 ý đây. cô giáo ác vcl)
a, 3x + 2 chia hết cho 2x - 1
=> ( 3x + 1 ) + 1 chia hết cho 2x - 1
mà 3x + 1 chia hết cho 2x - 1
=> 1 chia hết cho 2x - 1
=> 2x - 1 thuộc Ư(1) = { -1 ; 1 }
Ta có :
2x - 1 | -1 | 1 |
2x | 0 | 2 |
x | 0 | 1 |
a, Ta có x-4 \(⋮\)x+1
\(\Rightarrow\left(x+1\right)-5⋮x+1\)
\(\Rightarrow x+1\inƯ\left(5\right)=\left\{-1;-5;1;5\right\}\)
Ta có bảng giá trị
x+1 | -1 | -5 | 1 | 5 |
x | -2 | -6 | 0 | 4 |
Vậy x={-2;-6;0;4}
b.2x +5=2x-2+7=2(x-1)+7
=> 7 chiahetcho x-1
tu lam
c.4x+1 = 4x+4+(-3)=2(2x+2)-3
tu lAM
d.x^2-2x+3=x^2-2x+1+2=(x+1)^2+2
tu lam
e.x(x+3)+9=>
tu lam
Bài 1:
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12.
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.
b, a=-2
c,a=-20
Bài2.Xác định a và b sao cho
a)x^4+ax^2+1 chia hết cho x^2+x+1
b)ax^3+bx-24 chia hết cho (x+1)(x+3)
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21
Giải
a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2)
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p)
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi)
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d:
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21
b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**)
giải hệ (*), (**) trên ta được a= 2; b=-26
c) f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1
d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21
f(-1) = -6 ---> -2-a+b =-6 (*)
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**)
Giải hệ (*); (**) trên ta được a=3; b=-1
a. 3x + 5
=> 3x \(⋮\) x
5 \(⋮\) x
=> x \(\in\)(5)
=> x = 1 hoặc x = 5
2: \(\Leftrightarrow x+2\in\left\{1;-1\right\}\)
hay \(x\in\left\{-1;-3\right\}\)
a) Ta có : x - 4 chia hết cho x + 1
=> x + 1 - 5 chia hết cho x + 1
=> 5 chia hết cho x + 1
=> x + 1 thuộc Ư(5) = {-5;-1;1;5}
=> x = {-6;-2;0;4}
b) 3x - 1 chia hết cho x - 4
=> 3x - 12 + 11 chia hết cho x - 4
=> 3(x - 4) + 11 chia hết cho x - 4
=> 11 chia hết cho x - 4
=> x - 4 thuộc Ư(11) = {-11;-1;1;11}
=> x = {-7;3;5;15}
a,x-4 chia hết cho x+1
\(\Rightarrow\)x-(1+3) chia hết cho x+1
Mà x+1 chia hết cho x+1 nên 3 chia hết cho x+1
\(\Rightarrow\)x thuộc Ư(3)={1;3}
\(\Rightarrow\)x thuộc {0;2}
a) 3x + 5 chia hết cho x
Ta có: 3x \(⋮\) x
\(\Rightarrow\) Để 3x + 5 \(⋮\) x thì 5 \(⋮\) x
\(\Rightarrow\) x \(\in\) Ư(5) = {1; 5}
\(\Rightarrow\) x \(\in\) {1; 5}
b) x + 4 chia hết cho x + 1
Ta có: x + 4 = (x + 1) + 3 nên (x + 1) + 3 \(⋮\) (x + 1) khi 3 \(⋮\) (x + 1).
\(\Rightarrow\) x + 1 \(\in\) Ư(3) = {1; 3}
\(\Rightarrow\) x \(\in\) {0; 2}
Vậy x \(\in\) {0; 2}.
d) 12x chia hết cho x - 1
Do 12x \(⋮\) (x - 1) nên 12 \(⋮\) (x - 1)
\(\Rightarrow\) x - 1 \(\in\) Ư(12) = {1; 2; 3; 4; 6; 12}
\(\Rightarrow\) x \(\in\) {2; 3; 4; 5; 7; 13}
Vậy x \(\in\) {2; 3; 4; 5; 7; 13}.