Cho tam giác ABC . G là trọng tâm , d là đường thẳng đi qua G cắt cạnh AB,AC theo thứ tự tại M và N , khi đó AB/AM +AC/AN=...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ nha bn! gọi K,I,P lần lượt là tđ của AB,AC,BC
ta có AG/AP=2/3=> S AMG/ABP=2/3=> AM/AB=2/3
ta có AM/AB=2/3,AG/AP=2/3=> MG//BP (định lý talet đảo)
khi MG//BP=> AB/AM=AP/AG (1)
khi GN//PC (MG//BP) => AP/AG=AC/AN (2)
từ (1),(2)=> AB/AM+AC/AN=2AP/AG=2.3/2=3
câu trả lời tại đây
https://olm.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%B3+G+l%C3%A0+tr%E1%BB%8Dng+t%C3%A2m.+Qua+G+v%E1%BA%BD+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+d+c%E1%BA%AFt+hai+c%E1%BA%A1nh+AB+v%C3%A0+AC+t%E1%BA%A1i+D+v%C3%A0+E.+Ch%E1%BB%A9ng+minh:+AB/AD=AC/AE=3&id=516183
Gọi I,J,K lần lượt là trung điểm của các cạnh BC,CA,AB; các đường thẳng d1,d2 đi qua G và song song với AB,AC và cắt AC,AB tại L,H. Khi đó ta có: GL//AB=>AB/GL=BJ/GJ=3; GL//AM=>GL/AM=NG/MN. Nhân hai đẳng thức theo vế thì được AB/AM=3NG/MN (*). Một cách tương tự ta cũng chứng minh được AC/AN=3MG/MN (*). Cộng (*) và (**) theo vế thì được AB/AM+AC/AN=3(NG+MG)/MN=3.