K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

M P N 3 4 A C G

a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ

\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)

THAY\(NP^2=4^2+3^2\)

\(NP^2=16+9\)

\(NP^2=25\)

\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)

XÉT \(\Delta MNP\)

\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)

\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)

B) xét \(\Delta\text{ CPM}\)\(\Delta\text{CPA}\)

 \(PM=PA\left(GT\right)\)

\(\widehat{MPC}=\widehat{APC}=90^o\)

PC LÀ CAH CHUNG 

=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)

23 tháng 6 2020

c)

\(\Delta CPM=\Delta CPA\left(cmt\right)\)

\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)

\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)

             \(\widehat{NMC}+\widehat{CMP}=90^o\)

\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)

\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)

\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)

\(\Rightarrow\Delta NMC\text{ cân}\)

\(\Rightarrow CN=CM\left(đpcm\right)\)

21 tháng 7 2019

help me............

21 tháng 7 2019

cho tam giác MNP vuông tại M có MN=4cm;MP=3cm

a)tính đọ dài NP và so sánh các góc của tam giác MNP

b)Trên tia đối tia PM lấy A sao cho P là trung điểm của đoạn thẳng AM.QUa P dựng đường thẳng vuông góc với AM cắt AN tại C.C/m tam giác CPM=tam giác CPA

c)C/m CM=CN

d)GỌi G là giao điểm của MC và NP.TÍnh NG

e)Từ A vẽ đường thẳng vuông góc với NP tại D.Vẽ tia Nx là tia phân giác của góc MNP,vẽ tia Ay là tian pg của PAD,tia Ay cắt các tia NP,Nx,NM lần lượt tại E,H,K.C/m tam giác NEK cân

13 tháng 1 2023

Sử dụng tính chất hình bình hành nha bạn

a: Xét ΔMNA và ΔMBA có

MN=MB

góc NMA=gócBMA
MA chung

Do đó: ΔMNA=ΔMBA
=>AN=AB

b: MN=MB

AN=AB

=>MA là trung trực của NB

=>MA vuông góc với NB

c: Xét ΔMCP có MN/MC=MB/MP

nên NB//CP

d: Xét ΔANC và ΔABP có

AN=AB

góc ANC=góc ABP

NC=BP

Do đó: ΔANC=ΔABP

=>góc NAC=góc BAP

=>góc NAC+góc NAB=180 độ

=>B,A,C thẳng hàng

19 tháng 12 2017

a) xét tam giác MND và tam giác END ta có

MN = EN

góc MND = góc END

ND: cạnh chung

suy ra tam giác MND = tam giác END

suy ra DM = DE và óc NMD = góc NEDsuy ra góc NED = 90 độ

b) ta có tam giác MND = tam giác END suy ra MD = ED

xét tam giác DMK và tam giác DEP ta có 

góc KMD = góc PED ( =90độ)

MD = ED

góc MDK = góc EDP( hai góc đối đinh)

suy ra tam giác DMK = tam giác DEP(đpcm)

c)ta có tam giác DMK = tam giác DEP suy ra MK=EP

ta có NM = NEvà MK = EP suy ra MN+MK=NE+EP suy ra NK=NP

xet tam giác KNDvà tam giác PND ta có

NK=NP

KND= PND

ND:cạnh chung

suy ra tam giác KND=tam giác PND suy ra góc NDK = góc NDP

ta có góc NDK+góc NDP=180 độ và góc NDK= góc NDP

suy góc NDK = góc NDP =90độ

suy ra ND vuông góc với KP

19 tháng 12 2017

hello

a) Xét \(\Delta\)ANM và \(\Delta\)ABM có :

  • MN = MB ( gt )
  • Góc AMN = góc AMB ( vì MA là phân giác )
  • MA : cạnh chung

\(\Rightarrow\)\(\Delta\)ANM = \(\Delta\)ABM ( c . g . c )

\(\Rightarrow\)AN = AB ( hai cạnh tương ứng )

b) Gọi giao điểm giữa NB và MA là I

     Xét \(\Delta\)INM và \(\Delta\)IBM có :

  • MN = MB ( gt )
  • Góc IMN = góc IMB ( vì MI là phân giác ) 
  • MI : cạnh chung

\(\Rightarrow\)\(\Delta\)INM = \(\Delta\)IBM ( c . g . c )

\(\Rightarrow\)Góc MIN = góc MIB ( hai góc tương ứng )

Mà góc MIN + góc MIB = 180 ( do kề bù )

nên góc MIN = góc MIB = 180 ÷ 2 = 90 độ hay NB vuông góc với MA .

18 tháng 12 2021

a: Xét ΔPAN có

PM vừa là đường cao, vừa là trung tuyến

=>ΔPAN cân tại P

b: \(PM=\sqrt{5^2-4^2}=3\left(cm\right)\)

Xét ΔPAN có 

NB,PM là trung tuyến

NB cắt PM tại G

=>G là trọng tâm

GP=2/3*3=2cm

c: CI là trung trực của MP

=>I là trung điểm của MP và CI vuông góc MP tại I

Xét ΔMPN có

I là trung điểm của PM

IC//MN

=>C là trung điểm của PN

=>PM,NB,AC đồng quy

14 tháng 8 2021
Ai giúp vứi