tìm GTNN của hàm số
(x^4 - 4x^3+ 8x^2-8x+5)/(x^2 -2x+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN của biểu thức :
\(x^2+2x+4\)
Đặt A = \(x^2+2x+4\)
\(\Leftrightarrow A=\left(x^2+2.x.1+1\right)+3\)
\(\Leftrightarrow A=\left(x+1\right)^2+3\)
Ta luôn có : \(\left(x+1\right)^2\ge0\forall x\)
Suy ra : \(\left(x+1\right)^2+3\ge3\forall x\)
Hay A\(\ge3\) với mọi x
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Nên : \(A_{min}=3khix=-1\)
1. x2-8x+1 = x2 -2x.4 + 42 - 42 +1 = ( x- 4 )2 - 15
mà ( x - 4 )2 > 0
=> ( x - 4 )2 -15 > 0
Vậy -15 là gt min của biểu thức khi x = 4
2. x2 - 4x + y2 - 6y + 2 = x2 - 2.2x + 22 + y2 - 2.3y + 32 -11 = (x-2)2 + ( y - 3)2 -11
mà ( x - 2)2 > 0
( y - 3)2 > 0
Vậy -11 là gt min của biểu thức khi x=2 và y = 3
Mình nghĩ là bài 3 là tìm gt lớn nhất chứ bạn ^^
Bài 2:
a: \(A=x^2+8x\)
\(=x^2+8x+16-16\)
\(=\left(x+4\right)^2-16\ge-16\)
Dấu '=' xảy ra khi x=-4
b: \(B=-2x^2+8x-15\)
\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)
\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)
\(=-2\left(x-2\right)^2-7\le-7\)
Dấu '=' xảy ra khi x=2
c: \(C=x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=2
e: \(E=x^2-6x+y^2-2y+12\)
\(=x^2-6x+9+y^2-2y+1+2\)
\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=3 và y=1
bài 1
a, \(A=\frac{1}{-x^2+2x-2}=\frac{1}{-\left(x^2-2x+1\right)-1}=\frac{1}{-\left(x-1\right)^2-1}\)
Vì \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-1\le-1\Rightarrow A=\frac{1}{-\left(x-1\right)^2-1}\ge\frac{1}{-1}=-1\)
Dấu "=" xảy ra khi x=1
Vậy Amin=-1 khi x=1
b, \(B=\frac{2}{-4x^2+8x-5}=\frac{2}{-4\left(x^2-2x+1\right)-1}=\frac{2}{-4\left(x-1\right)^2-1}\ge\frac{2}{-1}=-2\)
Dấu "=" xảy ra khi x=1
Vậy Bmin=-2 khi x=1
bài 2:
a, \(A=\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\)
Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\Rightarrow A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
dấu "=" xảy ra khi x=-1/2
Vậy Amax=6/5 khi x=-1/2
b, \(B=\frac{5}{3x^2+4x+15}=\frac{5}{3\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{41}{3}}=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Dấu '=" xảy ra khi x=-2/3
Vậy Bmax=15/41 khi x=-2/3
Tử \(x^4+2x^3+8x+16\)
\(=x^4-2x^3+4x^2+4x^3-8x^2+16x+4x^2-8x+16\)
\(=x^2\left(x^2-2x+4\right)+4x\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)
\(=\left(x^2+4x+4\right)\left(x^2-2x+4\right)\)
\(=\left(x+2\right)^2\left(x^2-2x+4\right)\)
Mẫu \(x^4-2x^3+8x^2-8x+16\)
\(=x^4-2x^3+4x^2+4x^2-8x+16\)
\(=x^2\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)
\(=\left(x^2+4\right)\left(x^2-2x+4\right)\)
Thay tử và mẫu vào ta có:\(\frac{\left(x+2\right)^2\left(x^2-2x+4\right)}{\left(x^2+4\right)\left(x^2-2x+4\right)}=\frac{\left(x+2\right)^2}{x^2+4}\ge0\)
Dấu "=" khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Vậy Min=0 khi x=-2
\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)
Dấu \("="\Leftrightarrow x=2\)
\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)
Dấu \("="\Leftrightarrow x=1\)
\(D=\dfrac{1}{-\left(x^2+2x+1\right)+6}=\dfrac{1}{-\left(x+1\right)^2+6}\ge\dfrac{1}{6}\)
Dấu \("="\Leftrightarrow x=-1\)
1.
$A=2x^2-8x+1=2(x^2-4x+4)-7=2(x-2)^2-7$
Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow A\geq 2.0-7=-7$
Vậy $A_{\min}=-7$ khi $x-2=0\Leftrightarrow x=2$
2.
$B=x^2+3x+2=(x^2+3x+1,5^2)-0,25=(x+1,5)^2-0,25\geq 0-0,25=-0,25$
Vậy $B_{\min}=-0,25$ khi $x=-1,5$
3.
$C=4x^2-8x=(4x^2-8x+4)-4=(2x-2)^2-4\geq 0-4=-4$
Vậy $C_{\min}=-4$ khi $2x-2=0\Leftrightarrow x=1$
4. Để $D_{\min}$ thì $5-x^2-2x$ là số thực âm lớn nhất
Mà không tồn tại số thực âm lớn nhất nên không tồn tại $x$ để $D_{\min}$
A\(=2x^2-8x+1\)
=2x(x-4)+1≥1
Min A=1 ⇔x=4
B=\(x^2+3x+2\)
\(=\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{1}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)≥\(-\dfrac{1}{4}\)
Min B=-1/4⇔x=-3/2