K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

 

  

a: Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=180^0\)

Do đó: AEHF là tứ giác nội tiếp

Tâm I là trung điểm của AH

20 tháng 8 2020

Trong tam giác ABH có PK là đường trung bình nên PK//AH và \(PK=\frac{1}{2}AH\)

Trong tam giác ACH có NR là đường trung bình nên NR//AH và \(NR=\frac{1}{2}AH\)

Do đó PK//NR và PK=NR nên PNRK là hình bình hành

Mặt khác PK//AH mà AH _|_ BC => PK _|_ BC

Lại có PN //BC (do PN là đường trung bình tam giác ABC)

=> PN _|_ PK, do đó PNRK là hình chữ nhật

Gọi S là giao của PR và NK thì SP=SN=SK=SR

Chứng minh tương tự có IS=SM=SN=SK

Tam giác FPR vuông tại F có S là trung điểm PR nên SF=SP=SR

Tương tự cũng có SE=SK=SN; SD=SI=SM

=> SD=SE=SF=SM=SN=SP=SI=SK=SR

Vậy 9 điểm I,K,R,M,N,P,D,E,F cùng thuộc 1 đường tròn tâm I

Đường tròn đi qua 9 điểm được gọi là đường tròn Euler của tam giác ABC

22 tháng 11 2022

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

nên BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔDAH có DI/DH=DO/DA

nen Io//AH và IO=AH/2

=>AH=2OI

c: G là trọng tâm

nên AG=2AI

Xét ΔAHD có

AI là trung tuyến

AG=2/3AI

DO đó: G là trọng tâm

12 tháng 3 2022

 

a) theo gt, BFC=BEC=90

=> BFEC nội tiếp (có 2 góc kề bang nhau)

góc AFC=ADC=90 => AFDC nội tiếp ( có 2 cạnh kề cùng nhìn một đoan thẳng bằng nhau) 

b) vì tứ giác ABA'C nội tiếp => ABC = AA'C (cùng chắn cung AC)

Lại có ABC= AHF (Cùng phụ với góc BAD)

Ta thấy AFHE nội tiếp vì AFH +AEH = 90+90=180

=> AHF=AEF (Cùng chắn cung AF)

=>Đpcm

c) vì tứ giác EQA'C nôi tiếp

nên EQA'+ECA'=180 mà ECA'=90 vì là góc nội tiếp chắn nửa đường tròn

=> MQP=EQA'=90 ( vì MQP+EQA=180)

Trong đó ADC=90 =>Đpcm

d) Vì ABA'C VÀ FBDH nội tiếp nên góc NA'C=ABC=DHC

=>NA'C=DHC=>Đpcm