cho tam giác ABC, các đường trung trực của AB, AC cắt nhau tại O và cắt BC theo thứ tự tại E và F. chứng minh:
a, OB=OC
b, AO là tia phân giác của góc EAF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: O nằm trên đường trung trực của AB
nên OA=OB(1)
Ta có: O nằm trên đường trung trực của AC
nên OA=OC(2)
Từ (1) và (2) suy ra OB=OC
a: Xét ΔAOM và ΔBOM có
OM chung
MA=MB
OA=OB
=>ΔAOM=ΔBOM
Xét ΔAON và ΔCON có
OA=OC
ON chung
NA=NC
=>ΔAON=ΔCON
b: ΔAOM=ΔBOM
=>góc OAM=góc OBM
ΔAON=ΔCON
=>góc OAN=góc OCN
OA=OB
OA=OC
=>OB=OC
=>góc OBN=góc OCM
=>góc OAM=góc OAN
=>AO là phân giác của góc MAN