\(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right).....\left(\frac{1}{2003}-1\right)\)giup mik giải câu này:)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{2003}\right)\left(-1\frac{1}{2004}\right)\)
\(=-\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{2004}{2003}.\frac{2005}{2004}\)
\(=-\frac{3.4.5.....2004.2005}{2.3.4.....2003.2004}=\frac{-2005}{2}\)
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2002}-1\right)\left(\frac{1}{2003}-1\right)\)
\(=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2001}{2002}\right)\left(-\frac{2002}{2003}\right)\)
\(=\frac{-1.\left(-2\right).....\left(-2001\right)\left(-2002\right)}{2.3....2002.2003}\)
\(=\frac{1}{2003}\)
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)......\left(1+\frac{1}{2002}\right).\left(1+\frac{1}{2003}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{2003}{2002}.\frac{2004}{2003}\)
\(=\frac{2004}{2}=1002\)
(1+1/2)(1+1/3)(1+1/4)...(1+1/2003)=3/2.4/3.5/4.....2004/2003=3.4.5.....2004/2.3.4.....2003=2004/2=1002
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{2003}\right)\cdot\left(1-\frac{1}{2004}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)
\(A=\frac{1\cdot2\cdot3\cdot...\cdot2002\cdot2003}{2\cdot3\cdot4\cdot...\cdot2003\cdot2004}\)
\(A=\frac{1}{2004}\)
\(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}^2\right)\cdot\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}\)
\(=\frac{\frac{8}{27}\cdot\frac{9}{16}\cdot\left(-1\right)}{\frac{4}{25}\cdot\left(-\frac{125}{1728}\right)}\)
\(=\frac{-\frac{1}{6}}{-\frac{5}{432}}=-\frac{1}{6}:\left(-\frac{5}{432}\right)=\frac{72}{5}\)
\(\left[6.\left(\frac{-1}{3}\right)^2-3.\left(\frac{-1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)
\(=\left[6.\frac{1}{9}-\left(-1\right)+1\right]:\frac{-4}{3}\)
\(=\left[\frac{2}{3}-\left(-1\right)+1\right]:\frac{-4}{3}\)
\(=\frac{8}{3}:\frac{-4}{3}=\frac{-24}{12}=-2\)
~ Hok tốt ~
\(C=\left(\frac{3}{5}-\frac{4}{15}\right).\left(\frac{2}{7}-\frac{3}{14}\right)-\left(\frac{5}{9}-\frac{7}{27}\right).\left(1-\frac{3}{5}\right)+\left(1-\frac{11}{12}\right).\left(1+\frac{1}{12}\right)\)
\(C=\left(\frac{9}{15}-\frac{4}{15}\right).\left(\frac{4}{14}-\frac{3}{14}\right)-\left(\frac{15}{27}-\frac{7}{27}\right).\left(\frac{5}{5}-\frac{3}{5}\right)+\left(\frac{12}{12}-\frac{11}{12}\right).\left(\frac{12}{12}+\frac{1}{12}\right)\)
\(C=\frac{5}{15}.\frac{1}{14}.\frac{8}{27}.\frac{2}{5}.\frac{1}{12}.\frac{13}{12}\)
\(C=\frac{5.1.8.2.1.13}{15.14.27.5.12.12}\)
\(C=\frac{5.2.4.2.13}{3.5.14.27.5.4.3.2.2.3}\)
\(C=\frac{13}{3.14.27.5.3.3}\)
\(C=\frac{13}{51030}\)
(1/2-1)(1/3-1)(1/4-1)...(1/2003-1)
=(-1)/2.(-2)/3.(-3)/4....(-2002)/2003
=\(\frac{\left(-1\right).\left(-2\right).\left(-3\right)...\left(-2002\right)}{2.3.4....2003}=-\frac{1}{2003}\)
= (-1/2).(-2/3).(-3/4).....(-2002/2003) (Có 2002 p/số)
= (-1).(-2).(-3)....(-2002) / (2.3.4.....2003)
= 2.3.4....2002 / 2.3.4....2002.2003
= 1/2003