K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

moi hok lop 6 xin lỗi

29 tháng 11 2021

Tham Khảo nha bạn :

https://olm.vn/hoi-dap/detail/21858656221.html

30 tháng 1 2022

a, Xét tam giác ADC và tam giác AEB có : 

AC = AB ( gt ) 

^A _ chung 

AD = AE (gt)

Vậy tam giác ADC = tam giác AEB ( c.g.c ) 

=> ^ACD = ^ABE ( 2 góc tương ứng ) 

=> BE = CD ( 2 cạnh tương ứng ) 

b, Xét tam giác KBD và tam giác KCE có : 

^BKD = ^CKE ( đối đỉnh ) 

BE = CD (cmt) 

^KBD = ^KCD ( cmt ) 

Vậy tam giác KBD = tam giác KCE ( g.c.g ) 

 

30 tháng 1 2022

undefined

NM
7 tháng 3 2021

A B D E K C

a. ta có \(\hept{\begin{cases}\widehat{A}\text{ chung}\\AB=AC\\AD=AE\end{cases}\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\Rightarrow}BE=CD\)

b. ta có \(\hept{\begin{cases}BD=CE\\\widehat{BKD}=\widehat{CKE}\text{ (đối đỉnh)}\\\widehat{KBE}=\widehat{KCD}\text{ (Do chứng minh ở câu a)}\end{cases}\Rightarrow\Delta KBD=\Delta KCE}\)

c. ta có \(\hept{\begin{cases}\widehat{ABK}=\widehat{ACK}\text{ (Do c/m ở câu a)}\\AB=AC\\KB=KC\text{ (Do c/m ở câu b)}\end{cases}\Rightarrow\Delta ABK=\Delta ACK\left(c.g.c\right)\Rightarrow}\)AK là phân giác

d. ta có KB=KC ( kết quả c/m của câu b) nên KBC cân tại K

4 tháng 2 2022
a) Xét tam giác BCD,ta có: Góc B=C BD = EC BC là cạnh chung Do đó tam giác BCD= tam giác BCD (c-g-c) BE = CD ( 2 cạnh tương ứng) Vậy ... b)Xét tâm giác KBD và tam giác KCE,ta có : BKD = CKE ( đối đỉnh ) BD = CE KB = KC Do đó tg KBD =tg KCE(c-g-c) Vậy ...
7 tháng 3 2021

Cho tam giác ABC cân tại A. Điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chứng minh rằng:

a. BE = CD

b. Tam giác KBD bằng tam giác KCE

c. AK là phân giác của góc A

d. Tam giác KBC cân

20 tháng 2 2022

ngáo

25 tháng 4 2018

a) 

Ta có AB = AC ( gt )

   Mà AD = AE ( gt )

=> BD = EC

Xét tam giác BDC và tam giác CEB 

Ta có : BD = EC ( cmt )

  góc DBC = góc ECB ( tam giác ABC cân tạI A )

            BC là cạnh chung

Nên tam giác BDC = tam giác CEB ( c-g-c )

=> BE = CD ( 2 cạnh tương ứng )

 b) 

Ta có : góc DCB = góc EBC ( tam giác BDC = tam giác CEB 0

     Mà góc ECB = góc DBC ( tam giác ABC cân tại A )

 => góc ECK = góc DBK

Xét tam giác KBD và tam giác KCE

Ta có : góc DBK = góc ECK ( cmt )

                     DB = EC ( chứng minh ở đầu bài )

            góc BDK = góc CEB  ( tam giác BDC = tam giác CEB ) 

Nên tam giác KBD = tam giác KCE ( g-c-g )

c) 

Xét tam giác ADK và tam giác EDK 

Ta có : AD = AE ( GT )

            DK = EK ( tam giác KBD = tam giác KCE )

            AK là cạnh chung

Nên tam giác ADK = tam giác AEK ( c-c-c )

=> góc DAK = góc EAK

=> AK là p/g góc BAC

d)

Ta có KB = KC ( tam giác KBD = tam giác KCE )

=> Tam giác KBC cân tại K

a: Xet ΔAEB và ΔADC có

AE=AD

góc A chung

AB=AC

=>ΔAEB=ΔADC

=>BE=CD

b: Xet ΔKDB và ΔKEC có

góc KDB=góc KEC

DB=EC

góc KBD=góc KCE

=>ΔKBD=ΔKCE

c: Xét ΔABK và ΔACK có

AB=AC

BK=CK

AK chung

=>ΔABK=ΔACK

=>góc BAK=góc CAK

=>AK là phân giác của góc BAC

d: ΔABC cân tại A

mà AI là phân giác

nên AI vuông góc BC

a: Xét ΔAEB và ΔADC có

AE=AD
\(\widehat{BAE}\) chung

AB=AC

Do đó; ΔAEB=ΔADC

=>EB=DC

b: Ta có: ΔAEB=ΔADC

=>\(\widehat{ABE}=\widehat{ACD}\)

Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

BC chung

DC=EB

Do đó: ΔDBC=ΔECB

=>\(\widehat{BDC}=\widehat{CEB}\)

Xét ΔKDB và ΔKEC có

\(\widehat{KDB}=\widehat{KEC}\)

DB=EC

\(\widehat{KBD}=\widehat{KCE}\)

Do đó: ΔKDB=ΔKEC

c: Ta có: ΔKDB=ΔKEC

=>KB=KC

Xét ΔABK và ΔACK có

AB=AC

BK=CK

AK chung

Do đó: ΔABK=ΔACK

=>\(\widehat{BAK}=\widehat{CAK}\)

=>AK là phân giác của góc BAC

d: Ta có: ΔABC cân tại A

mà AK là đường phân giác

nên AK là đường cao

=>AK\(\perp\)BC

e: Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC