K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

Chỉ điền kết quả hay trình bày nữa

13 tháng 2 2016

Cần trình bày ko bạn

25 tháng 2 2020

Câu hỏi của boss magic - Toán lớp 7 - Học toán với OnlineMath

25 tháng 2 2020

p là số nguyên tố lớn hơn 3 nên p có hai dạng: 3k + 1 hoặc 3k - 1.

+) Xét p = 3k + 1

 *) Nếu d = 3a + 1 thì \(p+2d=3k+1+6a+2=3k+6a+3⋮3\)

Lại có: \(p+2d>3\)nên p + 2d là hợp số (vô lí)

 *) Nếu d = 3a + 2 thì \(p+d=3k+1+3a+2=3k+3a+3⋮3\)

Lại có: \(p+d>3\)nên p + d là hợp số (vô lí)

Vậy d chia hết cho 3 ở trong trường hợp này.

+) Xét p = 3k - 1

 *) Nếu d = 3m + 1 thì \(p+d=3k-1+3m+1=3k+3m⋮3\)

Lại có: \(p+d>3\)nên p + d là hợp số (vô lí)

 *) Nếu d = 3m + 2 thì \(p+2d=3k-1+6m+4=3k+6m+3⋮3\)

Lại có: \(p+2d>3\)nên p + 2d là hợp số (vô lí)

Ở trong th này, d cũng chia hết cho 3.

Vậy d chia hết cho 3

Măt khác: d chẵn vì p và p + d lẻ (do p;p+d nguyên tố ) nên d chia hết cho 6

Vậy \(d⋮6\left(đpcm\right)\)

14 tháng 7 2020

Assassin_7 sai chỗ là "Mâu thuẫn" chứ ko phải " Vô lí" nhé

19 tháng 2 2020

Vì p là số nguyên tố lớn hơn 3

⇒⇒ p có dạng 3k + 1 hoặc 3k + 2 (k∈∈N)

+) Trường hợp p= 3k+1

Nếu d chia cho 3 dư 1 => p + 2d = 3k + 1 + 6n +2 = 3k + 6n + 3 chia hết cho 3 ( Mâu thuẫn với p + 2d là số nguyên tố )

Nếu d chia cho 3 dư 2 => d = 3n + 2 => p + d = 3k + 1+ 3n+2 = 3k + 3n +3 chia hết cho 3 ( Mâu thuẫn )

Vậy d chia hết cho 3

+) Trường hợp p = 3k + 2. Tương tự ta có : d chia hết cho 3

=> d chia hết cho 3

Mà p; p+d là số nguyên tố => lẻ => p + d - p = d chẵn hay d chia hết cho 2

Vậy d chia hết cho 2 và 3 => d chia hết cho 6

25 tháng 9 2021

thiếu dữ liệu ko tính đc vd a = 12 k = 6 thì vẫn chia hết 
1 đề bài sai 
2 thiếu dữ kiện

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

16 tháng 8 2020

a) Vì p là số nguyên tố lớn hơn 3 nên p chia cho 3 dư 1 hoặc 2

+) \(p\equiv2\left(mod3\right)\)

\(\Rightarrow p+4\equiv6\left(mod3\right)\equiv0\left(mod3\right)\)

\(\Rightarrow p+4⋮3\)

Mà \(p+4>3\) nên \(p+4\) là hợp số   (loại)

\(\Rightarrow p\equiv1\left(mod3\right)\)

\(\Rightarrow p+8\equiv9\left(mod3\right)\)

\(\Rightarrow p+8⋮3\)

Vì p + 8 > 3 

\(\Rightarrow\)p + 8 là hợp số   (đpcm)

b) (d + 2c + 4b) như thế mới đúng chứ nhỉ?!

Ta có: \(\overline{abcd}=1000a+100b+10c+d\)

                       \(=4b+2c+d+1000a+96b+8c\)

Mà \(1000a⋮8\)\(96b⋮8\)và \(8c⋮8\)

\(\Rightarrow4b+2c+d⋮8\)

\(\Rightarrow\overline{abcd}⋮8\)  (đpcm)

16 tháng 8 2020

Nếu bạn thấy mình làm khó hiểu câu a thì để mình làm cách khác

Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 với k là số tự nhiên khác 0

Với p = 3k + 2

=> p + 4 = 3k + 6 chia hết cho 3

p + 4 > 3 => p + 4 là hợp số

=> p = 3k + 2   (loại)

=> p = 3k + 1

=> p + 8 = 3k + 9 chia hết cho 3

Mà p + 8 > 3 nên p + 8 là hợp số  (đpcm)

1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.4. Chứng minh rằng :...
Đọc tiếp

1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.

2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.

3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.

4. Chứng minh rằng : Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác.

5. Cho a, b, c dương nhỏ hơn 1. Chứng minh rằng ít nhất một trong ba bất đẳng thức sau sai

a( 1 - b) > 1/4 ; b( 1- c) > 1/4 ; c( 1 - a ) > 1/4 

6. Chứng minh rằng \(\sqrt{ }\)2 là số vô tỉ

7. Cho các số a, b, c thỏa mãn các điều kiện: 

{ a+ b+ c> 0             (1)

{ ab + bc + ca > 0    (2)       

{ abc > 0                    ( 3)

CMR : cả ba số a, b, c đều dương

8. Chứng minh bằng phản chứng định lí sau : "Nếu tam giác ABC có các đường phân giác trong BE, CF bằng nhau, thì tam giác ABC cân".

9. Cho 7 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 100. CMR luôn tìm được 3 đoạn để có thể ghép thành 1 tam giác.

2
11 tháng 7 2018

Này là toán lớp 7

11 tháng 7 2018

Lớp 10 đấy

9 tháng 11 2016

Giả sử \(x,y\in Q,x=\frac{a}{b},y=\frac{c}{d},a,b,c,d\in Z;b,d>0\)

a) Nếu \(x>y\), nghĩa là \(\frac{a}{b}>\frac{c}{d}\). Ta có:

\(ad-bc>0.\)\(b>0,d>0,bd>0\) nên

\(\frac{ad-bc}{b.d}>\frac{0}{b.d}=0\Rightarrow\frac{a.d}{b.d}-\frac{b.c}{b.d}>0\\ \Rightarrow\frac{a}{b}-\frac{c}{d}>0,\)

tức là \(x-y>0\)

b) Ngược lại nếu \(x-y>0\), nghĩa là

\(\frac{a}{b}-\frac{c}{d}>0\Rightarrow\frac{a.d}{b.d}-\frac{b.c}{b.d}>0\\ \Rightarrow\frac{a.d-b.c}{b.d}>\frac{0}{b.d}\\ \Rightarrow a.d-b.c>0\Rightarrow a.d>b.c\\ \Rightarrow\frac{a.d}{b.d}>\frac{b.c}{b,d}\Rightarrow\frac{a}{b}>\frac{c}{d}\)

Tức là \(x>y\)