Giải phương trình:
x^2 + (x^2) / ( (x+1)^2 ) = 3
AI LÀM NHANH NHẤT MÌNH LIKE CHO NHÉ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta cm BĐT :
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
<=> \(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ac\ge0\)
<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng với mọi a ; b; c )
Dấu '' = '' BĐT xảy ra khi a =b =c
(*) ÁP dụng BĐT với \(a=x^2;b=x;c=1\) ta có
( VẾ trái ) = \(\left(x^2+x+1\right)^2\le3\left[\left(x^2\right)^2+x^2+1\right]=3\left(x^4+X^2+1\right)=\left(vế\right)phải\)
Dấu ' = '' xảy ra khi \(x^2=x=1\Leftrightarrow x=1\)
Vậy pt có n* duy nhất là 1
nhân chéo
x^2+xm+2x+x+m+2=x^2-xm+x
=>2xm+2x+m+2=0
=>2x(m+1)+m+2=0
để pt vô nghiệm thì m+1=0=>m=-1
a đề sai hay sao mà vô nghiệm ?
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(VP^2=\left(\sqrt{2x+1}+\sqrt{17-2x}\right)^2\)
\(\le\left(1+1\right)\left(2x+1+17-2x\right)=36\)
\(\Rightarrow VP^2\le36\Rightarrow VP\le6\)
Lại có: \(VT=x^4-8x^3+17x^2-8x+22\)
\(=\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6\ge6\)
Thấy: \(VT\le VP=6\)\(\Rightarrow VT=VP=6\)
\(\Rightarrow\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6=6\)
Suy ra x=4
ko hiểu chỗ nào ib nhé
lời giải của bạn trên có 1 xíu sai nhé
Là BĐT Bu-nhi-a Cốp-xki chứ ạ ?