K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

vậy 1/5.2 + 34/3456.23 =vgy0 nên ta có :

1/2.5 + B = 1/16 - B = 32156.097 : 35.98 + -9 -76 , suy ra  

B= >89 _980 -  -50 + 678 x 54=143.098-2014/5.2015

vậy B=78

Chua hoc

Hk tot,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k nhe Nguyen Chau Tuan Kiet

13 tháng 3 2019

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)

\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)

\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)

13 tháng 3 2019

3/\(7a+b=0\Rightarrow b=-7a\)

\(f\left(x\right)=ax^2-7ax+c\).Ta có: \(f\left(10\right)=100a-70a+c=30a+c\)

\(f\left(-3\right)=30a+c\).Nhân theo vế ta có đpcm:

\(f\left(10\right).f\left(-3\right)=\left(30a+c\right)^2\ge0\) (đúng)

5 tháng 4 2017

\(5B=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2014}{5^{2014}}\)

\(5B-B=4B=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2014}}-\frac{1}{5^{2015}}< \frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\)

Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2014}}\)

\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}\)

\(5A-A=4A=1-\frac{1}{5^{2014}}< 1\)

=>A<1/4

Ta có 4B<A<1/4

=>B<1/16( đpcm)

5 tháng 4 2017

khó quá bạn ạ

26 tháng 4 2018

\(a)\) Đặt \(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}\) ta có : 

\(A=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2013+2}{2013}\)

\(A=\frac{2014}{2014}-\frac{1}{2014}+\frac{2015}{2015}-\frac{1}{2015}+\frac{2013}{2013}+\frac{2}{2013}\)

\(A=1-\frac{1}{2014}+1-\frac{1}{2015}+1+\frac{2}{2013}\)

\(A=\left(1+1+1\right)-\left(\frac{1}{2014}+\frac{1}{2015}-\frac{2}{2013}\right)\)

\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\left(\frac{1}{2013}+\frac{1}{2013}\right)\right]\)

\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2013}\right]\)

\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]\)

Mà : 

\(\frac{1}{2014}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2014}-\frac{1}{2013}< 0\)

\(\frac{1}{2015}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2015}-\frac{1}{2013}< 0\)

Từ (1) và (2) suy ra : \(\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)< 0\) ( cộng theo vế ) 

\(\Rightarrow\)\(-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>0\)

\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>3\) ( cộng hai vế cho 3 ) 

\(\Rightarrow\)\(A>3\) ( điều phải chứng minh ) 

Vậy \(A>3\)

Chúc đệ học tốt ~ 

26 tháng 4 2018

c, 

\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{9999}{10000}\)

vì \(\frac{1}{2}< \frac{2}{3}\)

\(\frac{3}{4}< \frac{4}{5}\)

\(\frac{5}{6}< \frac{6}{7}\)

.............................

\(\frac{9999}{10000}< \frac{10000}{10001}\)

nên \(C^2< \frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{10000}{10001}\)

\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}\)

\(\Rightarrow C< \frac{1}{100}\)

bt lm mỗi một câu :v

,mình sửa lại đề:

\(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}< 3\)

xóa các chữ số ở tử và mẫu: 2014 và 2014,2015 và 2015

=\(\frac{2013}{2013}\)

=\(1\)

vì \(1>3\) nên \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}>3\)

6 tháng 10 2015

a, M = 52+53+...+52014

5M = 53+54+...+52015

5M - M = 52015 - 52

4M = 52015 - 25

=> 4M + 25 = 52015 là một lũy thừa (đpcm)

b, 4M = 52015 - 25

=> M = \(\frac{5^{2015}-25}{4}

6 tháng 10 2015

*hic* Giúp mình đi 

13 tháng 11 2016

help me

25 tháng 4 2017

sao nhiều dữ vậy

13 tháng 8 2017

ở tử số ta làm thế này

\(TS=\left(1+\frac{1}{2014}\right)+\left(1+\frac{1}{2013}\right)+\left(1+\frac{1}{2012}\right)+...+\left(1+\frac{2013}{2}\right)\)

\(TS=2015\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+...+\frac{1}{2}\right)\)

\(\frac{TS}{MS}=2015\)

26 tháng 4 2016

c)\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\)

\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2012}}\right)\)

\(2A=2+1+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2011}}\)

\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

26 tháng 4 2016

1/

A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

A=1/1-1/100

Vì 1/100>0

-->1/1-1/100<1

-->A<1