cho tam giác ABC vuông cân tại A.Gọi D là điểm trên cạnh AC,BI là phân giác của tam giác ABD,đường cao IM của tam giác BID cắt đường vuông góc với AC kẻ từ C tại N.Tính góc IBN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMinh : ΔΔ ABI = ΔΔ MBI ( cạnh huyền - góc nhọn )
\Rightarrow AIBˆ=BIMˆAIB^=BIM^
\Rightarrow IB là phân giác góc AIM (1)
Tam giác ACB vuông cân ở A
→ABCˆ=ACBˆ=45o→ABC^=ACB^=45o
Mà ACBˆ+BCNˆ=ACNˆ=900ACB^+BCN^=ACN^=900
\Rightarrow 450+BCNˆ=900450+BCN^=900
→ACBˆ=BCNˆ=450→ACB^=BCN^=450 \Rightarrow Tia CB là tia phân giác góc ICN (2)
Mà IB \bigcap_{}^{} CB = {B} nên từ (1); (2) \Rightarrow NB là phân giác ngoài của tam giác ICN tại N
Vẽ tia Nx là tia đối của tia NC
Ta có :
BINˆ+INB^=AIN^2+INx^2BIN^+INB^=AIN^2+INx^2
\Leftrightarrow 1800−IBN^=12(AIN^+INx^)1800−IBN^=12(AIN^+INx^)
\Leftrightarrow 1800−IBN^=12(1800−CIN^+1800−CNI^)1800−IBN^=12(1800−CIN^+1800−CNI^)
\Leftrightarrow 1800−IBN^=12[(1800+1800)−(CIN^+CNI^)]1800−IBN^=12[(1800+1800)−(CIN^+CNI^)]
\Leftrightarrow 1800−IBN^=12.(3600−900)1800−IBN^=12.(3600−900)
\Leftrightarrow 1800−IBN^=12.27001800−IBN^=12.2700
\Rightarrow IBN^=1800−1350=450IBN^=1800−1350=450
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
gócHBK chung
=>ΔBHK=ΔBAC
=>BK=BC
c: ΔBKC cân tại B
mà BM là trung tuyến
nên BM là phân giác
=>B,D,M thẳng hàng
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc FBE chung
=>ΔBEF=ΔBAC
=>BF=BC
c: ΔBFC cân tại B
mà BD là phân giác
nên BD vuông góc CF
=>BD//AH
=>AH vuông góc AE
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Ta có: ΔHBA\(\sim\)ΔABC(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\)
hay AH=12(cm)
Vậy: AH=12cm