Cho tam giác MNP vuông tại N, góc P = 35 0. Khi đó góc M có số đo là ?
75 độ
65 độ
55 độ
45 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác MNP vuông tại M; biết N=35 độ ; số đo góc P là:
A 45 độ
B 55 độ
C. 65 độ
D 90 độ
\(\)+Tam giác MNP vuông tại M
\(=>\widehat{M}=90^o\)
+Áp dụng định lý tổng ba góc trong tam giác có:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)
\(=>\widehat{N}+\widehat{P}=180^o-\widehat{M}\)
\(=>\widehat{P}=180^o-\widehat{M}-\widehat{N}\)
\(=>\widehat{P}=180^o-90^o-35^o=55^o\)
=>Chọn B
a) Từ \(\Delta ABC\)cân tại A, \(\Rightarrow\widehat{B}=\widehat{C}=75^o\)
\(\Rightarrow\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)\)
\(\Rightarrow\widehat{A}=180^o-\left(75^o+75^o\right)\)
\(\Rightarrow\widehat{A}=30^o\)
b) Từ \(\Delta MNP\)cân tại P, \(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{P}}{2}=\frac{80^o}{2}=40^o\)
c) Ta có: \(NP^2=13^2=169\)(1)
\(MN^2+MP^2=5^2+12^2=25+144=169\)(2)
Từ (1) và (2) suy ra: \(NP^2=MN^2+MP^2\)
\(\Rightarrow\Delta MNP\)vuông (theo định lí Pytago)
Happy new year!!!
b: \(\widehat{NMH}+\widehat{N}=90^0\)
\(\widehat{P}+\widehat{N}=90^0\)
Do đó: \(\widehat{NMH}=\widehat{P}\)
Vì Tam giác `MNP` cân tại `M -> MN = MP,` \(\widehat{N}=\widehat{P}\)
Mà `MN= 3 cm, `\(\widehat{N}=60^0\)
`-> MN = MP = 3 cm, `\(\widehat{N}=\widehat{P}=60^0\)
Xét Tam giác `MNP:`
\(\widehat{M}+\widehat{N}+\widehat{P}=180^0\)
`->`\(\widehat{M}+60^0+60^0=180^0\)
`->`\(\widehat{M}=60^0\)
Ta có:
\(\widehat{M}=\widehat{N}=\widehat{P}=60^0\)
`->` \(\text {Tam giác MNP là tam giác đều}\)
`-> MN = MP = NP = 3 cm.`
a. tam giác ABC vg tại A suy ra B+C=90 suy ra B=90-40=50
b. từ đề bài suy ra N+P=180-75=105 và N=P=(N+P)/2=......
55o