so cac cap (x;y) tu nguyen thoa man : x/5 - 4/y = 1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
IxI >=0 với mọi x thuộc Z
IyI >=0 với mọi x thuộc Z
=> IxI+IyI >=0 với ọi x,y thuộc Z
Mà -5<0 => Không tồn tại giá trị x,y thỏa mãn đề bài
Lời giải:
$xy=x-y$
$\Rightarrow xy-x+y=0$
$\Rightarrow x(y-1)+(y-1)=-1$
$\Rightarrow (x+1)(y-1)=-1$
Với $x,y$ nguyên thì $x+1, y-1$ nguyên. Mà tích của chúng bằng -1 nên ta xét các TH sau:
TH1: $x+1=1, y-1=-1\Rightarrow x=0; y=0$
TH2: $x+1=-1, y-1=1\Rightarrow x=-2; y=2$
Ta có:
3=1.3=(-1).(-3)=3.1=(-3).(-1)
Ta có bảng sau:
x+1 | 1 | -1 | 3 | -3 |
y+2 | 3 | -3 | 1 | -1 |
x | 0 | -2 | 2 | -4 |
y | 1 | -5 | -1 | -3 |
Vậy ta có các cặp (x;y) thỏa mãn là: (x;y)=(0;1);(-2;-5);(2;-1);(-4;-3)
\(xy-x-y=2\)
\(\Rightarrow xy-x-y+1=3\)
\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=3\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=3\)
Tự xét được chứ :">
Ta có :
xy = 2x + 2y
=> xy = 2(x+y)
do 2(x+y) là số chẵn => xy là số chẵn => x hoặc y là số chẵn mà x,y là số nguyên tố
=> \(\orbr{\begin{cases}x=2\Rightarrow2y=4+2y\Rightarrow0=4< L>\\y=2\Rightarrow2x=2x+4\Rightarrow0=4< L>\end{cases}}\)
Vậy không có giá trị x,y nào thỏa mãn
Ta có:
x+y+xy=3
<=> (x+xy) + (y+1) = 4
<=> x(y+1) + (y+1) = 4
<=> (x+1)(y+1) = 4
Vì x,y nguyên nên (x+1) và (y+1) nguyên
Lại có 4=(-1).(-4)=(-2).(-2)=1.4=2.2
Khi đó ta có:
{x+1= -1 <=> {x= -2
{y+1= -4........{y= -5
hoặc
{x+1= -4 <=> {x= -5
{y+1= -1........{y= -2
hoặc
{x+1= -2 <=> {x= -3
{y+1= -2........{y= -3
hoặc
{x+1= 4 <=> {x= 3
{y+1= 1........{y= 0
hoặc
{x+1= 1 <=> {x= 0
{y+1= 4........{y= 3
hoặc
{x+1= 2 <=> {x= 1
{y+1= 2........{y= 1
Vậy (x;y) bằng (-2;-5) ; (-5;-2) ; (-3;-3) ; (3;0) ; (0;3) ; (1;1)