số cặp (x;y) nguyên thỏa mãn (x+1).(y+2)=7 là
cho mk cách giải mk sẽ tick.mk cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x,y nguyên mà |x| + |y| = 2
<= > x , y \(\le\) 2
TH1: |x| = 0 ; |y| = 2 => có 2 trường hợp
TH2: |x| = 1 ; |y| = 1 => có 4 trường hợp
TH3: |x| = 2 ; |y| = 0 => Có 2 trường hợp
Vậy có tất cả: 2 + 4 + 2= 8 trường hợp
TH1 : x = 1 và y = 2
TH2 : x = -1 và y = -1
TH3 : x = -2 hoặc 2 và y = 0
TH4 : x= 0 và y = -2 hoặc 2
**** đúng nha
TH1 : x=1 và y=2
TH2 : x= -1 và y= -1
TH3 :x=-2 hoặc 2 và y=0
TH4 : x=0 và y = -2 hoặc 2
\(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\)
\(\Leftrightarrow\frac{9+xy}{3x}=\frac{5}{6}\)
\(\Rightarrow54+6xy=15x\)
\(\Leftrightarrow x\left(5-2y\right)=18\)
Vì \(x,y\)là số nguyên nên \(x,5-2y\)là các ước của \(18\), mà \(5-2y\)là số lẻ.
Ta có bảng giá trị:
5-2y | -9 | -3 | -1 | 1 | 3 | 9 |
x | -2 | -6 | -18 | 18 | 6 | 2 |
y | 7 | 4 | 3 | 2 | 1 | -2 |
Xét điểm M(a;b) bất kì nằm trog ( tính cả biên ) của hình tròn ( \(C_n\)) : \(x^2+y^2\le n^2\)
Mỗi điểm M như vậy tương ứng với 1 và chỉ 1 hình vuông đơn vị S(M) mà M là đỉnh ở goc trái , phía dưới
Từ đó suy ra \(S_n\)= số hình vuông S (M) = tổng diện tích của S(M) với \(M\in\left(C_n\right)\)
Rõ ràng các hình vuông S(M) , với \(M\in\left(C_{ }_n\right)\)đều nằm trog hình tròn \(\left(C_{n+\sqrt{2}}\right):x^2+y^2\le\left(n+\sqrt{2}\right)^2\)
Do đó : \(S_n\le\pi\left(n+\sqrt{2}\right)^2\)(1)
Tương tự như vậy , ta thấy các hình vuông S(M) , với \(M\in\left(C_n\right)\)phủ kín hình tròn
\(\left(C_{n-\sqrt{2}}\right):x^2+y^2\le\left(n-\sqrt{2}\right)^2\)vì thế \(S_n\ge\pi\left(n-\sqrt{2}\right)^2\)(2)
Từ (1) và (2) suy ra \(\sqrt{\pi}\left(n-\sqrt{2}\right)\le\sqrt{S_n}\le\sqrt{\pi}\left(n+\sqrt{2}\right)\)
suy ra \(\sqrt{\pi}\left(1-\frac{\sqrt{2}}{n}\right)\le\frac{\sqrt{S_n}}{n}\le\sqrt{\pi}\left(1+\frac{\sqrt{2}}{n}\right)\)
Mà lim \(\sqrt{\pi}\left(1-\frac{\sqrt{2}}{n}\right)\)= lim\(\sqrt{\pi}\left(1+\frac{\sqrt{2}}{n}\right)=\sqrt{\pi}\)nên lim \(\sqrt{\frac{S_n}{n}}=\sqrt{\pi}\)
@ Huy @ Bài làm đánh đẹp lắm. Nhưng cô cũng không hiểu được rõ ràng là toán 6 sao có lim, phương trình đường tròn;... ( lớp 11 , 12 ) ở đây.
Lần sau chú ý giải Toán 6 không cần dùng kiến thức quá cao nhé.
Tuy nhiên đề bài bạn thiếu. Lần sau em có thể sửa lại đề bài trước rồi hẵng làm nha.
(x+1).(y+2)=7
=>(x+1) và (y+2) thuộc Ư(7)={-1;1;-7;7}
Ta có bảng sau:
x+1 -1 -7 1 7
y+2 -7 -1 7 1
x -2 -8 0 6
y -9 -3 5 -1
Vậy các cặp số (x,y ) cần tìm thỏa mãn đề bài là: (-2;-9);(-8;-3);(0;5);(6;-1)
Theo bài ra ta có : (x + 1) . (y + 2) = 7
=> (x + 1) . (y + 2) = 1 . 7 = (-1) . (-7)
TH1 : x + 1 = 1 => x = 0
y + 2 = 7 => y = 5
TH2 : x + 1 = 7 => x = 6
y + 2 = 1 => y = -1
TH3 : x + 1 = -1 => x = -2
y + 2 = -7 => y = -9
TH4: x + 1 = -7 => x = -8
y + 2 = -1 => y = -3
Vậy x =0 khi y = 5
x = 6 khi y = -1
x = - 2 khi y = -9
x = -8 khi y = -3