K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

\(M\in\left(d_1\right)\Rightarrow M\left(x;\dfrac{x+3}{2}\right)\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MI}\right|\)      \(\left(\overrightarrow{IA}=\overrightarrow{BI}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-\dfrac{1}{2}\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{7}{2}\end{matrix}\right.\Rightarrow I\left(-\dfrac{1}{2};\dfrac{7}{2}\right)\)

\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}\right|_{min}\Leftrightarrow\left|\overrightarrow{MI}\right|_{min}\Leftrightarrow\overrightarrow{MI}\perp\overrightarrow{AB}\Leftrightarrow\overrightarrow{MI}.\overrightarrow{AB}=0\)

\(\Leftrightarrow\left(x_I-x_M;y_I-y_M\right).\left(x_B-x_A;y_B-y_A\right)=0\)

\(\Leftrightarrow\left(x_I-x_M\right)\left(x_B-x_A\right)+\left(y_I-y_M\right)\left(y_B-y_A\right)=0\)

\(\Leftrightarrow\left(-\dfrac{1}{2}-x\right).\left(-3\right)+\dfrac{7}{2}-\dfrac{x+3}{2}=0\Rightarrow M\left(...\right)\)

18 tháng 2 2021

\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=2\left|\overrightarrow{MI}\right|\) nhé, đánh thiếu, nhưng nó ko ảnh hưởng gì đến bài toán :v

11 tháng 4 2019

I thuộc Δ nên I(-2y+2;y)

Theo đề, ta có: IA=IB

=>IA^2=IB^2

=>(-2y+2-1)^2+(y+1)^2=(-2y+2-4)^2+(y-2)^2

=>(2y-1)^2+(y+1)^2=(2y+2)^2+(y-2)^2

=>4y^2-4y+1+y^2+2y+1=4y^2+8y+4+y^2-4y+4

=>-2y+2=4y+8

=>-6y=-6

=>y=1

=>I(0;1)

I(0;1); A(1;-1)

=>IA=căn (1-0)^2+(-1-1)^2=căn 5

Phương trình của (C) là:
(x-0)^2+(y-1)^2=R^2=5

9 tháng 3 2022

Thay m = 2 ta được (d1) : 2x + y = 5

<=> (d) : y = 5 - 2x 

Thay m = 2 ta được 

(d2) : x + 2y = 3 <=> (d2) : y = \(\dfrac{3-x}{2}\)

Hoành độ giao điểm tm pt 

\(5-2x=\dfrac{3-x}{2}\Leftrightarrow10-4x=3-x\Leftrightarrow-3x=-7\Leftrightarrow x=\dfrac{7}{3}\)

=> y = 1/3 

Vậy với m = 2 (d1) cắt (d2) tại A(7/3;1/3)

NV
24 tháng 2 2021

Gọi \(M\left(x;y\right)\) là điểm cách đều \(d_1\) và \(d_2\)

\(\Rightarrow\dfrac{\left|2x-y+5\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|3x+6y-1\right|}{\sqrt{3^2+6^2}}\)

\(\Leftrightarrow\left|6x-3y+15\right|=\left|3x+6y-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-9y+16=0\\9x+3y+14=0\end{matrix}\right.\)

\(\Rightarrow\) Phương trình đường thẳng cần tìm có dạng:

\(\left[{}\begin{matrix}9\left(x+2\right)+3\left(y-0\right)=0\\3\left(x+2\right)-9\left(y-0\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+y+6=0\\x-3y+2=0\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn

20 tháng 12 2020

b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)

hay \(-x-4=3x+2\)

\(\Leftrightarrow-x-4-3x-2=0\)

\(\Leftrightarrow-4x-6=0\)

\(\Leftrightarrow-4x=6\)

hay \(x=-\dfrac{3}{2}\)

Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được: 

\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)

Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)

c) Vì (D2) song song với (D) nên a=-1

hay (D2): y=-x+b

Vì (D2) đi qua điểm B(-2;5)

nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được: 

-(-2)+b=5

hay b=5-2=3

Vậy: (D2): y=-x+3

20 tháng 12 2020

b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)

hay \(-x-4=3x+2\)

\(\Leftrightarrow-x-4-3x-2=0\)

\(\Leftrightarrow-4x-6=0\)

\(\Leftrightarrow-4x=6\)

hay \(x=-\dfrac{3}{2}\)

Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được: 

\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)

Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)

c) Vì (D2) song song với (D) nên a=-1

hay (D2): y=-x+b

Vì (D2) đi qua điểm B(-2;5)

nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được: 

-(-2)+b=5

hay b=5-2=3

Vậy: (D2): y=-x+3