Bài 1: Cho a2 + b2 + c2 = ab + bc + ca. Chứng minh a = b = c
Bài 2: Cho ( a/ b + c) + ( b/ a + c) + ( c/ a + b) = 1. Chứng minh rằng: ( a2/ b + c) + ( b2/ a + c) + ( c2/ a + b) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
ta có : \(a^2+b^2+c^2=ab+bc+ca\)
\(2.\left(a^2+b^2+c^2\right)=2.\left(ab+bc+ca\right)\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}=>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}=>}a=b=c\)
Ta có
$$a^2+b^2+c^2-ab-bc-ca=0,$$
hay $$\dfrac{1}{2}\left[(a-b)^2+(b-c)^2 +(c-a)^2\right[ = 0.$$
Mà vế trái luôn không âm \(\forall a,b,c \in \mathbb{R}\), đẳng thức xảy ra khi $a=b=c.$
Vậy ta có điều cần chứng minh.
Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)
\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Do \(VT\ge0\forall a;b;c\) mà \(VT=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)
Ta có đpcm
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{a^2}{2}+8b^2\geq 2\sqrt{\frac{a^2}{2}.8b^2}=4ab$
$\frac{a^2}{2}+8c^2\geq 2\sqrt{\frac{a^2}{2}.8c^2}=4ac$
$2(b^2+c^2)\geq 2.2\sqrt{b^2c^2}=4bc$
Cộng các BĐT trên theo vế và thu gọn ta được:
$a^2+10(b^2+c^2)\geq 4(ab+bc+ac)=4$
Ta có đpcm.
a) Vì a, b, c là độ dài 3 cạnh của một tam giác
⇒ a + c > b và a + b > c (Bất đẳng thức tam giác)
⇒ a + c – b > 0 và a + b – c > 0
Ta có: (b – c)2 < a2
⇔ a2 – (b – c)2 > 0
⇔ (a – (b – c))(a + (b – c)) > 0
⇔ (a – b + c).(a + b – c) > 0 (Luôn đúng vì a + c – b > 0 và a + b – c > 0).
Vậy ta có (b – c)2 < a2 (1) (đpcm)
b) Chứng minh tương tự phần a) ta có :
( a – b)2 < c2 (2)
(c – a)2 < b2 (3)
Cộng ba bất đẳng thức (1), (2), (3) ta có:
(b – c)2 + (c – a)2 + (a – b)2 < a2 + b2 + c2
⇒ b2 – 2bc + c2 + c2 – 2ca + a2 + a2 – 2ab + b2 < a2 + b2 + c2
⇒ 2(a2 + b2 + c2) – 2(ab + bc + ca) < a2 + b2 + c2
⇒ a2 + b2 + c2 < 2(ab + bc + ca) (đpcm).
1) Ta có a2 + b2 + c2 = ab + bc + ca
=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0
=> (a - b)2 + (b - c)2 + (a - c)2 = 0
=> \(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}}\Rightarrow a=b=c\left(\text{đpcm}\right)\)
a^2 + b^2 + c^2 = ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2ac - 2bc = 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0
<=> a-b = 0 và b-c=0 và c-a=0
<=> a=b=c
a^2/b+c + b^2/a+c + c^2=a+b
= a(a/b+c) + b(b/a+c) + c(c/a+b)
= a(a/b+c + 1 - 1) + b(b/a+c + 1 - 1) + c(c/a+b + 1 - 1)
= a(a+b+c/b+c) - a + b(a+b+c/a+c) - b + c(a+b+c/a+b) - c
= (a+b+c)(a/b+c + b/a+c + c/a+b) - (A+b+c)
mà a/b+c + b/a+c + c/a+b = 1
= a+b+c - (a+b+c)
= 0