K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021

lại là chuyên mục toán hình :)) ( P/s hình t lấy từ gg xuống vì trên này khó vẽ... )

 undefined

Ta có: \(\cos\left(\widehat{SB,AC}\right)=\left|\cos\left(\overrightarrow{SB},\overrightarrow{AC}\right)\right|=\dfrac{\left|\overrightarrow{SB}.\overrightarrow{AC}\right|}{SB.AC}\)

Mà: \(\overrightarrow{SB}.\overrightarrow{AC}=\left(\overrightarrow{SA}+\overrightarrow{AB}\right).\overrightarrow{AC}=\overrightarrow{SA}.\overrightarrow{AC}+\overrightarrow{AB}.\overrightarrow{AC}\)

\(=SA.AC.\cos\left(\overrightarrow{SA},\overrightarrow{AC}\right)+AB.AC.\cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)\)

thay số các kiểu ta đc \(\overrightarrow{SB}.\overrightarrow{AC}=a^2\) (1)

Hoàn toàn dễ dàng tính được \(SB=\sqrt{SA^2+AB^2}=2a\) ( tam giác SAB vuông tại A )

\(\Rightarrow SB.AC=2\sqrt{2}a^2\) (2)

Từ (1),(2) \(\Rightarrow\cos\left(\widehat{SB,AC}\right)=\dfrac{1}{2\sqrt{2}}\)

\(\Rightarrow\left(\widehat{SB,AC}\right)\simeq69^0\) 

có 17' nữa t định ghi mà sợ ông kêu số xấu sai kết quả :)))

 

 

9 tháng 2 2021

đúng r, nh mà tui bảo tính cosin thui ;))

10 tháng 6 2018

Đáp án C


Ta có tam giác SAO vuông cân tạiA.
Suy ra:  S A = O A = A C 2 = a 2 2

Vậy :  V S . A B C D = 1 3 . S O . S A B C D = a 3 2 6

18 tháng 2 2017

Đáp án C

a: (SAB) giao (ABCD)=AB

SA vuông góc AB, SA thuộc (SAB)

AD vuông góc AB, AD thuộc (ABCD)

=>((SAB);(ABCD))=góc SAD=90 độ

 

16 tháng 11 2017

Đáp án A.

Gọi H là hình chiếu của C trên SO và góc S O C ^  tù nên H nằm ngoài đoạn SO => CH ⊥ (SBD)

=> Góc tạo bởi SC và (SBD) là C S O ^

Lại có 

18 tháng 11 2019

1 tháng 5 2018

2 tháng 1 2017

Đáp án D

Phương pháp:

Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).

Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.

Cách giải:

Gọi H là trung điểm của AB => OH//AD

ABCD là hình vuông => AD ⊥ AB; OHAB

Mà OH ⊥ SA, (vì SA ⊥ (ABCD))

=> OH ⊥ (SAB)

=>SH là hình chiếu vuông góc của SO trên mặt phẳng (SAB)

=> (SO,(SAB)) = (SO,SH) = HSO

Ta  có:  OH là đường trung bình của tam giác ABD 

Tam giác SAH vuông tại A 

Tam giác SHO vuông tại H: 

3 tháng 3 2018

NV
4 tháng 5 2021

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)

Từ A kẻ \(AH\perp SO\Rightarrow AH\perp\left(SBD\right)\)

\(\Rightarrow AH=d\left(A;\left(SBD\right)\right)\)

\(AC=a\sqrt{2}\Rightarrow AO=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\)

Hệ thức lượng: \(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AO^2}\Rightarrow AH=\dfrac{SA.AO}{\sqrt{SA^2+AO^2}}=\dfrac{a\sqrt{21}}{7}\)