tìm các số nguyên dương a,b,c sao cho a+b^2+c=a^2 bc
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TD
1
4 tháng 9 2023
a2+b2+c2=(a2+2ac+c2)-2ac+b2=(a+c)2-2b2+b2=(a+b+c)(a-b+c)
mà a2+b2+c2 là số nguyên tố và a+b+c>a-b+c nên a-b+c=1
=> a+c=b+1 => a2+2ac+c2=b2+2b+1 => a2+b2=2b+1=2a+2c+1+1
=>a2-2a+1+c2-2c+1=0 => (a-1)2+(c-1)2=0=>a=c=1=>b=1
Vậy (a,b,c) cần tìm là (1,1,1)
SN
0
12 tháng 6 2020
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị