K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021
Gọi DD là điểm trên cạnh ACAC sao cho DB=DCDB=DCgọi EE là điểm trên cạnh BCBC sao cho CE=ABCE=AB7ˆC=180∘7C^=180∘ˆDBC=ˆDCB=12ˆABC=ˆABDDBC^=DCB^=12ABC^=ABD^⇒△ABD∼△ACB⇒△ABD∼△ACB (g, g)⇒ABAC=BDCB⇒ABAC=BDCB (1)△ABD=△ECD△ABD=△ECD (c, g, c) (2)(2)⇒ˆDEC=ˆDAB=4ˆC⇒DEC^=DAB^=4C^⇒ˆDEB=180∘−4ˆC=3ˆC⇒DEB^=180∘−4C^=3C^ (3)(2)⇒ˆEDC=ˆADB=2ˆC⇒EDC^=ADB^=2C^⇒ˆEDB=180∘−ˆEDC−ˆADB=3ˆC⇒EDB^=180∘−EDC^−ADB^=3C^ (4)từ (3, 4)⇒DB=EB⇒DB=EB (5)từ (1, 5)⇒ABAC=EBBC=1−ECBC=1−ABBC⇒ABAC=EBBC=1−ECBC=1−ABBC⇒ABAC+ABBC=1⇒ABAC+ABBC=1⇒1AB=1AC+1BC⇒1AB=1AC+1BC (đpcm)

Hình gửi kèm

Cho ΔABC có A^=2B^=4C^.pngNguồn: https://diendantoanhoc.net/topic/181822-frac1abfrac1acfrac1bc/
19 tháng 10 2021

Bạn tk câu này mình làm rồi:

Cho ΔABC nhọn, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.CMR:a) DE=AH.SinAb) Cho AI là phân giác g... - Hoc24

nhớ đổi điểm I thành điểm D

https://olm.vn/hoi-dap/detail/273894454691.html

Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm. a) Tính góc B và C, và các tỉ số lượng giác của chúng nó. b*) Tính độ dài các cạnh BC, AB và AC. Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc...
Đọc tiếp

Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm.

a) Tính góc B và C, và các tỉ số lượng giác của chúng nó.

b*) Tính độ dài các cạnh BC, AB và AC.

Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc vuông và đường cao trong tam giác vuông để tính.

c) Tính độ dài các cạnh AH và BH.

d) Hãy chứng minh rằng: Cả ba tam giác vuông ABC, HBA và HAC đồng dạng với nhau.

e*) Chứng minh rằng: \(\dfrac{\sin\widehat{HAC}}{\cos\widehat{HBA}}\div\dfrac{\tan\widehat{HAC}}{\cot\widehat{ABC}}=\dfrac{csc^2\widehat{ABC}}{sec^2\widehat{ABC}\cdot\cot\widehat{HBA}}\)

Gợi ý:

1. Secant - sec α nghịch đảo với cos α

2. Cosecant - csc α nghịch đảo với sin α

0

a: Vì \(\widehat{C}>30^0\) nên \(\sin C>\sin\left(30^0\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{AB}{BC}>\dfrac{1}{2}\)

hay AB>1/2BC

b: Vì \(\widehat{C}< 30^0\) nên \(\sin C< \sin30^0=\dfrac{1}{2}\)

=>AB<1/2BC