Cho đường tròn(O;R) và đường thẳng (d) không qua O cắt đường tròn tại hai điểm A và B.Từ một điểm M trên (d)(M nằm ngoài đường tròn (O) và A nằm giữa B và M),vẽ hai tiếp tuyến MC,MD của đường tròn (O)(C, D ∈ (O)).Gọi I là trung điểm của AB, tia IO cắt MD tại K
a)Chứng minh 5 điểm:M, C, I, O, D cùng thuộc 1 đường tròn
b)Chứng minh:KD.KM=KO.KI
c)Một đường thẳng đi qua O và song song với CD cắt các tia MC,MD lần lượt tại E,F.Xác định vị trí của điểm M trên đường thẳng (d) sao cho diện tích △MEF đạt giá trị nhỏ nhất.
O I B A M C D E F K (d)
a) Xét đường tròn (O; R) có I là trung điểm của dây AB
=> OI ⊥ AB (liên hệ giữa đường kính và dây cung)
=> ΔMIO vuông tại I => I, M, O cùng thuộc đường tròn đường kính OM
ΔMCO vuông tại C => C, M, O cùng thuộc đương tròn đường kính OM
ΔMDO vuông tại D => D, M, O cùng thuộc đường tròn đường kính OM
=> I, M, O, C, D cùng thuộc đường tròn đường kính OM
b) Xét ΔKOD và ΔKMI có: \(\widehat{KDO}=\widehat{KIM}\) (=90o)
\(\widehat{OKM}\) chung
=> ΔKOD ~ ΔKMI (g.g) => \(\dfrac{KO}{KM}=\dfrac{KD}{KI}\) => KO.KI = KD.KM
c) Xét đường tròn (O; R), tiếp tuyến MC, MD => MO là phân giác \(\widehat{CMD}\); MD = MC
Lại có OC = OD = R => OM là trung trực của CD hay OM ⊥ CD.
Mà CD // EF => OM ⊥ EF. Lại có MO là phân giác \(\widehat{CMD}\)
=> \(\widehat{CMO}=\widehat{DMO}\) => ΔEMO = ΔFMO (g.c.g)
=> SEMO = SFMO =\(\dfrac{1}{2}\)SEMF
Để SEMF nhỏ nhất thì SEMO nhỏ nhất
=> \(\dfrac{1}{2}\)EM.OC = \(\dfrac{1}{2}\).R.EM nhỏ nhất => EM nhỏ nhất (do R cố định)
Ta có: EM = EC + CM ≥ 2\(\sqrt{EC.CM}\)=2R (BĐT Cô-si)
Dấu "=" xảy ra ⇔ EC = CM => OC = CE = CM (t/c đường trung tuyến trong tam giác vuông) => ΔCMO vuông cân tại C => OM = OC\(\sqrt{2}\) =R\(\sqrt{2}\)
Vậy để SEMF nhỏ nhất thì M là giao điểm của (d) và (O; R\(\sqrt{2}\))