ho tam giác ABC với A ( − 10 ; 2 ) ,B ( 6 ; 4 ) và trực tâm H ( 5 ; 2 ) . Viết phương trình đường thẳng AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HELP MEEEEEE ..................................................
Gọi I, J, K lần lượt là các giao điểm của AH và MO; AC và BH; MC và BO
\(MA\perp\left(ABC\right)\Rightarrow MA\perp BJ\)
H là trực tâm của tam giác ABC => \(AC\perp BJ\)
\(\left\{{}\begin{matrix}BJ\perp MA\\BJ\perp AC\end{matrix}\right.\)\(\Rightarrow BJ\perp\left(MAC\right)\)
\(\Rightarrow BJ\perp MC\)
O là trực tâm của tam giác MBC nên \(BO\perp MC\)
Do đó : \(BO\perp\left(BJK\right)\Rightarrow MC\perp\left(BOH\right)\Rightarrow MC\perp OH\) (1)
Chứng minh tương tự : \(MB\perp OH\) (2)
Từ (1) và (2) cho \(OH\perp\left(MBC\right)\)
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
b: Xét ΔABD có AB=AD và góc B=60 độ
nên ΔABD đều