K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2021

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)x-\left(\sqrt{2}+1\right)y=\left(\sqrt{2+1}\right)\sqrt{2}\\x+\left(\sqrt{2+1}\right)y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\left(\sqrt{2}+1\right)y=2+\sqrt{2}\left(1\right)\\x+\left(\sqrt{2}+1\right)y=1\left(2\right)\end{matrix}\right.\)

Cộng từng vế của (1) và (2) ta được: \(\Rightarrow2x=3+\sqrt{2}\Leftrightarrow x=\dfrac{3+\sqrt{2}}{2}\)

Thay vào (2) ta được: \(\Rightarrow\dfrac{3+\sqrt{2}}{2}+\left(\sqrt{2}+1\right)y=1\Leftrightarrow\left(\sqrt{2}+1\right)y=1-\dfrac{3+\sqrt{2}}{2}=\dfrac{-\sqrt{2}-1}{2}\)

\(\Leftrightarrow y=\dfrac{-\sqrt{2}-1}{2\left(\sqrt{2}+1\right)}=\dfrac{-1}{2}\) Vậy...

1) Ta có: \(\left\{{}\begin{matrix}3\sqrt{x}-\sqrt{y}=5\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}-3\sqrt{y}=15\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11\sqrt{x}=33\\3\sqrt{x}-\sqrt{y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

2) Ta có: \(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{x+3}+4\sqrt{y+1}=-4\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y+1}=0\\\sqrt{x+3}-2\sqrt{y+1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=0\\\sqrt{x+3}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\x+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

29 tháng 4 2023

4. Đk: \(x,y\ge0\)

\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}=1\\\sqrt{y}+\sqrt{x+1}=1\end{matrix}\right.\left(1\right)\)

Ta có: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}\ge0+1=1\\\sqrt{y}+\sqrt{x+1}\ge0+1=1\end{matrix}\right.\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=0,\sqrt{x+1}=1\\\sqrt{y}=0,\sqrt{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)<tmđk>

Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(0;0\right)\)

13 tháng 1 2021

Lấy phương trình trên trừ phương trình dưới thu được:

\(2\left(y-x\right)=-2\Rightarrow y=x-1\)

Thay vào phương trình dưới suy ra:

\(2\sqrt{2}x=4\sqrt{2}0\Rightarrow x=2\Rightarrow y=1\)

13 tháng 1 2021

Sửa lại tí. \(2\sqrt{2}x=4\sqrt{2}\Rightarrow x=2\Rightarrow y=1\)

15 tháng 12 2021

\(ĐK:x,y\in R\)

Từ 2 PT \(\Leftrightarrow\sqrt{\left(x+1\right)^2+\left(y-1\right)^2}=\sqrt{\left(x-5\right)^2+\left(y+1\right)^2}\)

\(\Leftrightarrow x^2+2x+y^2-2y+2=x^2-10x+y^2+2y+26\\ \Leftrightarrow12x-4y-24=0\\ \Leftrightarrow3x-y-6=0\\ \Leftrightarrow y=3x-6\)

Thay vào \(PT\left(1\right)\Leftrightarrow\sqrt{\left(x-1\right)^2+\left(3x-8\right)^2}=\sqrt{\left(x+1\right)^2+\left(3x-7\right)^2}\)

\(\Leftrightarrow10x^2-50x+65=10x^2-40x+50\\ \Leftrightarrow10x=15\Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow y=-\dfrac{3}{2}\)

Vậy hệ có nghiệm \(\left(x;y\right)=\left(\dfrac{3}{2};-\dfrac{3}{2}\right)\)

31 tháng 5 2021

\(\left\{{}\begin{matrix}\sqrt{xy+\dfrac{x-y}{x^2+y^2+1}}+\sqrt{x}=y+\sqrt{y}\left(1\right)\\\left|x-1\right|+\left|y-2\right|=1+x^2-y^2\left(2\right)\end{matrix}\right.\)

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\xy+\dfrac{x-y}{x^2+y^2+1}\ge0\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{xy+\dfrac{x-y}{x^2+y^2+1}}-y=\sqrt{y}-\sqrt{x}\)

\(\Leftrightarrow\dfrac{y\left(x-y\right)+\dfrac{x-y}{x^2+y^2+1}}{\sqrt{xy+\dfrac{x-y}{x^2+y^2+1}}+y}=\dfrac{x-y}{-xy}\Leftrightarrow\left(x-y\right)\left[\dfrac{y+\dfrac{1}{x^2+y^2+1}}{\sqrt{xy+\dfrac{x-y}{x^2+y^2+1}}+y}+xy\right]=0\Leftrightarrow x=y\).

Thay x = y vào (2) ta có \(\left|y-1\right|+\left|y-2\right|=1\). (*)

Ta có \(\left|y-1\right|+\left|y-2\right|=\left|y-1\right|+\left|2-y\right|\ge y-1+2-y=1\).

Mà đẳng thức xảy ra ở (1) nên ta phải có \(1\le y\le2\). (TMĐK)

Vậy pt đã cho có vô số nghiệm \(x=y=k\) với \(1\le k\le2\)

 

1 tháng 6 2021

Sao VP (1) bạn biến đổi từ \(\sqrt{y}-\sqrt{x}\) ra \(\dfrac{x-y}{-xy}\) được vậy?

2) Ta có: \(\left\{{}\begin{matrix}\sqrt{3x-1}-\sqrt{2y+1}=1\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{3x-1}-2\sqrt{2y+1}=2\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-5\sqrt{2y+1}=-10\\\sqrt{3x-1}-\sqrt{2y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2y+1}=2\\\sqrt{3x-1}-2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+1=4\\3x-1=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=3\\3x=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{2}\\x=\dfrac{10}{3}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{10}{3}\\y=\dfrac{3}{2}\end{matrix}\right.\)

3) Ta có: \(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-2}+2\sqrt{y-3}=6\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y-3}=10\\\sqrt{x-2}+\sqrt{y-3}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y-3}=2\\\sqrt{x-2}+2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-3=4\\x-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=3\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)

16 tháng 4 2021

Đặt \(x+y=a\)   ;  \(\sqrt{x+1}=b\)

Ta được hpt sau:

\(\left\{{}\begin{matrix}2a+b=4\\a-3b=-5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+1}=2\)

\(\Leftrightarrow x=3\)

\(\Rightarrow y=-2\)

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:

Lấy PT (2) trừ đi 2* PT(1) ta có:

$-(2y-y^2)-2(y-1)^2=-6$

$\Leftrightarrow y^2-2y-4=0$

Vì $y^2-2y=4$ nên $2\sqrt{x-2}=2+(2y-y^2)=2-(y^2-2y)=2-4=-2<0$ (vô lý)

Do đó hpt vô nghiệm.