một hộp đựng 18 viên bi trong đó có 8 bi trắng và 6 bi vàng, 4 bi xanh. Lấy ngẫu nhiên3 viên bi. Tính xác suất để:
a. 3 viên bi cùng màu
b. 3 viên bi khác màu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có, số phần tử của không gian mẫu n ( Ω ) = C 10 2
Gọi các biến cố: D: “lấy được 2 viên đỏ” ; X: “lấy được 2 viên xanh” ;
V: “lấy được 2 viên vàng”
Ta có D, X, V là các biến cố đôi một xung khắc và C = D ∪ X ∪ V
P ( C ) = P ( D ) + P ( X ) + P ( V ) = C 4 2 C 10 2 + C 3 2 C 10 2 + C 2 2 C 10 2 = 2 9
Chọn đáp án B
Ta có:
Gọi các biến cố: D: “lấy được 2 bi viên đỏ” ta có
X: “lấy được 2 bi viên xanh” ta có:
V: “lấy được 2 bi viên vàng” ta có:
T: “ lấy được 2 bi màu trắng” ta có :
Ta có D; X; V; T là các biến cố đôi một xung khắc và A= D ∪ X ∪ V ∪ T
Chọn B.
Ta có: số phần tử của không gian mẫu là Ω = C 40 2
Gọi các biến cố: D: “lấy được 2 bi viên đỏ” ta có: n D = C 20 2 = 190 ;
X: “lấy được 2 bi viên xanh” ta có: n X = C 10 2 = 45 ;
V: “lấy được 2 bi viên vàng” ta có: n V = C 6 2 = 15 ;
T: “ lấy được 2 bi màu trắng” ta có: n T = C 4 2 = 6 .
Ta có D,X,V,T là các biến cố đôi một xung khắc và A = D ∪ X ∪ V ∪ T
Suy ra xác xuất để lấy được 2 viên bi cùng màu là:
P A = P D + P X + P V + P T = 256 C 40 2 = 64 195 .
Chọn đáp án D.
Chọn D
Cách 1:
Số phần tử của không gian mẫu: .
Gọi A là biến cố: “lấy ra 4 viên bi có đủ ba màu”
Ta xét các khả năng của biến cố A:
TH1: Lấy được 1 bi trắng, 1 bi xanh và 2 bi vàng, trường hợp này có (cách).
TH2: Lấy được 1 bi trắng, 2 bi xanh và 1 bi vàng, trường hợp này có (cách).
TH3: Lấy được 2 bi trắng, 1 bi xanh và 1 bi vàng, trường hợp này có (cách).
Số cách lấy 4 viên bi có đủ cả ba màu là:
Xác suất cần tìm là
Cách 2:
Số phần tử của không gian mẫu:
Gọi A là biến cố: “lấy ra 4 viên bi không có đủ ba màu” .
Ta có:
Xác suất của biến cố A là:
Vậy xác suất cần tìm là: .
Không gian mẫu: \(C_{14}^5\)
Số cách để lấy 5 viên bi có đúng 1 màu: \(C_6^5+C_8^5\)
Số cách để lấy bi có đủ 2 màu: \(C_{14}^5-C_6^5-C_8^5\)
Xác suất: \(P=\dfrac{C_{14}^5-C_6^5-C_8^5}{C_{14}^5}\)
Chọn A
Lời giải
Không gian mẫu là số sách chọn ngẫu nhiên mỗi hộp 1 viên bi
Số phần tử của không gian mẫu là Ω = C 15 1 . C 18 1
Gọi X là biến cố "2 viên bi lấy ra từ mỗi hộp có cùng màu"
Ta có các kết quả thuận lợi cho biến cố X như sau
● Hộp A lấy ra 1 bi trắng và hộp B lấy ra 1 bi trắng, có C 4 1 . C 7 1 cách
● Hộp A lấy ra 1 bi đỏ và hộp B lấy ra 1 bi đỏ, có C 5 1 . C 6 1 cách
● Hộp A lấy ra 1 bi xanh và hộp B lấy ra 1 bi xanh, có C 6 1 . C 5 1 cách
Suy ra số phần tử của biến cố
Vậy xác suất cần tính
P ( X ) = Ω x Ω = 44 135
a) Không gian mẫu : \(\left|\Omega\right|=C^3_{18}=816\)
Biến cố A" 3 bi cùng màu"
Các trường hợp thuận lợi cho biến cố A "
TH1: 3 bi trắng \(C^3_8\)
TH2: 3 bi vàng \(C^3_6\)
TH3: 3 bi xanh \(C^3_4\)
=> \(\left|\Omega_A\right|=C^3_8+C^3_6+C^3_4=80\)
=> \(P\left(A\right)=\dfrac{80}{816}=\dfrac{5}{51}\)
b) Biến cố B" 3 bi khác màu"
Chọn mỗi màu 1 viên
Màu trắng 8 cách
Màu vàng 6 cách
Màu xanh 4 cách
=> \(\left|\Omega_B\right|=8\cdot6\cdot4=192\)
=> \(P\left(B\right)=\dfrac{\left|\Omega_B\right|}{\left|\Omega\right|}=\dfrac{192}{816}=\dfrac{4}{17}\)