Tìm nghiệm nguyên của phương trình sau: 2x +3y=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\Leftrightarrow x\left(y-2\right)=-3y-1\)
\(\Leftrightarrow x=\frac{-3y-1}{y-2}=\frac{\left(-3y+6\right)-7}{y-2}=-3-\frac{7}{y-2}\)
Để \(x\inℤ\)thì \(\frac{7}{y-2}\inℤ\)
\(\Leftrightarrow y-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
lần lượt thay các giá trị của y-2 ta tìm dc các cặp nghiệm (x;y) là:
(-2; -5); (4; 1); (-10; 3); (-4; 9)
tham khảo:
<=> 2x^2+3y^2+4x -19 =0
<=> 2.(x2 + 2x +1) + 3.y2 = 21
<=> 2.(x+1)2 + 3. y2 = 21
Vì 3y2; 21 đều chia hết cho 3 nên 2.(x +1)2 chia hết cho 3 . hơn nữa 2. (x +1)2 ≤≤≤ 21 và (x+1)2 là số chính phương
=> (x+1)2 =0 hoặc 9
+) x + 1 = 0 => x = -1 => y 2 = 7 => loại
+) (x+1)2 = 9 => y2 = 1
=> x+ 1 = 3 hoặc x+ 1=- 3 => x = 2 hoặc x = -4
y2 = 1 => y = 1 hoặc y = -1
Vậy....
\(x^6-2x^3y-x^4+y^2+7=0\)
\(\Leftrightarrow\left(x^6-2x^3y+y^2\right)-x^4+7=0\)
\(\Leftrightarrow\left(x^3-y\right)^2-\left(x^2\right)^2=-7\)
\(\Leftrightarrow\left(x^3-y+x^2\right)\left(x^3-y-x^2\right)=-7\)
Liệt kê ước 7 ra rồi lm đc
\(2x+3y=7 \\ \Leftrightarrow x=\dfrac{-7-3y}{2} \)
PT có nghiệm nguyên \(\Leftrightarrow -7-3y \vdots 2 \\ \Leftrightarrow (-7-3y \in Ư(2) \\ \Leftrightarrow -7-3y \in {-2;2;-1;1} \\ \Leftrightarrow y \in {\dfrac{-5}{3} (L) ; -3(TM); -2(TM) ; \dfrac{-8}{3} (L)} \)
- Với \(y=-3\) có: \(x=1\).
- Với \(y=-2\) có: \(x=\dfrac{-1}{2} (L)\)
Vậy \((x;y)=(-3;1)\) là nghiệm nguyên duy nhất của phương trình.
- Nếu sai thì cứ báo cáo + xóa ạ. =(((