K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2021

\(\left\{{}\begin{matrix}x^3=2x+y\left(1\right)\\y^3=2y+x\left(2\right)\end{matrix}\right.\)

Cộng từng vế với vế của (1) và (2) ta được:

\(x^3+y^3=3x+3y\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-3\right)=0\)

*Nếu x+y=0⇔x=-y Thay vào (1) ta được : \(-y^3=-2y+y\Leftrightarrow y^3-y=0\Leftrightarrow y\left(y^2-1\right)=0\Leftrightarrow y\left(y-1\right)\left(y+1\right)=0\left[{}\begin{matrix}y=0;x=0\\y=1;x=-1\\y=-1;x=1\end{matrix}\right.\)

*Nếu \(x^2-xy+y^2=3\) Lấy pt(1) trừ pt (2) ta được:

\(x^3-y^3=x-y\Leftrightarrow\left(x-y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x^2-xy+y^2-1\right)=0\left(3\right)\)

Thay \(x^2-xy+y^2=3\) vào (3) ta được: \(\Rightarrow2\left(x-y\right)=0\Leftrightarrow x=y\)

Thay x=y vào (1) ta được:

\(y^3=3y\Leftrightarrow y^3-3y=0\Leftrightarrow y\left(y^2-3\right)=0\Leftrightarrow y\left(y-\sqrt{3}\right)\left(y+\sqrt{3}\right)=0\Leftrightarrow\left[{}\begin{matrix}y=0\\y=\sqrt{3}\\y=-\sqrt{3}\end{matrix}\right.\)

Vậy...

1 tháng 2 2021

Ok bạn :>

\(\left\{{}\begin{matrix}x^3=2x+y\\y^3=2y+x\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x^3-y^3=x-y\\y^3=2y+x\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+xy+y^2\right)=x-y\\y^3=2y+x\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)=0\\y^3=2y+x\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2+xy+y^2-1\right)=0\\y^3=2y+x\end{matrix}\right.\)

Phần x2 + xy + y2 - 1 mk chịu (Không bt là có nghiệm hay không nữa, mk sẽ cho nó là vô nghiệm nha!)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x-y=0\\y^3=2y+x\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=y\\y^3=3y\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=y\\y^3-3y=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=y\\y\left(y^2-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=y\\\left[{}\begin{matrix}y=0\\y=\sqrt{3}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=\sqrt{3}\\y=\sqrt{3}\end{matrix}\right.\end{matrix}\right.\)

Vậy...

Chúc bn học tốt! (Mk chỉ nghĩ được thế thôi, nếu cái kia tách ra được chắc vẫn còn nghiệm nx!)

7 tháng 10 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)

1 tháng 5 2021

a.\(\left\{{}\begin{matrix}4x+2y=14\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=18\\2x-2y=4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\4-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\-2y=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

vậy  hệ pt có ndn \(\left\{2;0\right\}\)

1 tháng 5 2021

b.\(\left\{{}\begin{matrix}2x-4y=0\\3x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=0\\6x+4y=16\end{matrix}\right.\)

\(\left\{{}\begin{matrix}8x=16\\2x-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\4-4y=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\-4y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

vậy hệ pt có ndn \(\left\{2;1\right\}\)

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)

7 tháng 10 2021

9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{2x+y}+\dfrac{12}{2x-y}=222\\\dfrac{21}{2x+y}+\dfrac{14}{2x-y}=224\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{2x-y}=2\\\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=\dfrac{1}{10}\\2x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y=\dfrac{9}{10}\\2x+y=\dfrac{1}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{9}{20}\\x=\dfrac{11}{40}\end{matrix}\right.\)

10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-2\\2x-y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3y=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)

11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=\dfrac{x+4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\13y=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

7 tháng 10 2021

13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}-\dfrac{16}{y}=8\\\dfrac{12}{x}-\dfrac{15}{y}=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\)

14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=\dfrac{2}{3}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)

15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)(ĐKXĐ: \(x\ge1,y\ge1\))

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}=3\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(\Leftrightarrow x=y=2\left(tm\right)\)

15 tháng 4 2020

\(\Leftrightarrow\left\{{}\begin{matrix}-2x+5y=-5\\2x+3y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=0\\2x+3y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=0\end{matrix}\right.\)

25 tháng 6 2019

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

3 tháng 11 2019

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...

17 tháng 12 2022

Bài 2:

a: 2x+y=1 và x-y=2

=>3x=3 và x-y=2

=>x=1 và y=-1

b: x+2y=2 và x+2y=5

=>0x=-3 và x+2y=2

=>\(\left(x,y\right)\in\varnothing\)

c: 2x+y=3 và -2x-y=-3

=>0x=0 và 2x+y=3

=>\(\left\{{}\begin{matrix}x\in R\\y=3-2x\end{matrix}\right.\)

19 tháng 3 2020

a, Ta có : \(\left\{{}\begin{matrix}3x+2y=-2\\-x+4y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3\left(4y-3\right)+2y=-2\\x=4y-3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}12y-9+2y=-2\\x=4y-3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}14y=7\\x=4y-3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=\frac{1}{2}\\x=\frac{4.1}{2}-3=-1\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(-1;\frac{1}{2}\right)\)

b, Ta có : \(\left\{{}\begin{matrix}x+2y=11\\5x-3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2y\\5\left(11-2y\right)-3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2y\\55-10y-3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2y\\-13y=-52\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2.4=3\\y=4\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;4\right)\)

c, Ta có : \(\left\{{}\begin{matrix}10x-9y=1\\15x+21y=36\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}30x-27y=3\\30x+42y=72\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}10x-9y=1\\-69y=-69\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}10x-9=1\\y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(1;1\right)\)

d, Ta có : \(\left\{{}\begin{matrix}2x+y=3\\x+y=2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-2x\\x+2-2x=2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-2x\\2-x=2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-2.0=3\\x=0\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(0;3\right)\)

e, Ta có : \(\left\{{}\begin{matrix}x+y=2\\2x-3y=9\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2-y\\2\left(2-y\right)-3y=9\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2-y\\4-2y-3y=9\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2-y\\-5y=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2+1=3\\y=-1\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;-1\right)\)

f, Ta có : \(\left\{{}\begin{matrix}x-2y=11\\5x+3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11+2y\\5\left(11+2y\right)+3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11+2y\\55+10y+3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11+2y\\13y=-52\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;-4\right)\)

g, Ta có : \(\left\{{}\begin{matrix}3x-y=5\\2x+3y=18\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3x-5\\2x+3\left(3x-5\right)=18\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3x-5\\2x+9x-15=18\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3x-5\\11x=33\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=9-5=4\\x=3\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;4\right)\)

h, Ta có : \(\left\{{}\begin{matrix}5x+3y=-7\\3x-y=-8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x+3\left(3x+8\right)=-7\\y=3x+8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x+9x+24=-7\\y=3x+8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}14x=-31\\y=3x+8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=-\frac{31}{14}\\y=3.\left(-\frac{31}{14}\right)+8=\frac{19}{14}\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(-\frac{31}{14};\frac{19}{14}\right)\)

19 tháng 3 2020

...????