Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cạnh góc vuông lớn 7.5
cạnh huyền \(\frac{3}{2}\sqrt{41}\)
hình chiếu có 1 thôi vì chung đỉnh 900/41 :) số hơi lẻ
Ta có: \(\dfrac{AB}{AC}=\dfrac{4}{5}\)
\(\Leftrightarrow AC=\dfrac{5\cdot AB}{4}=\dfrac{5\cdot6}{4}=7.5\left(cm\right)\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay \(BC=\dfrac{3\sqrt{41}}{2}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{24\sqrt{41}}{41}\left(cm\right)\\CH=\dfrac{75\sqrt{41}}{82}\left(cm\right)\end{matrix}\right.\)
Bài 3:
Gọi độ dài hai cạnh góc vuông lần lượt là a,b
Theo đề, ta có: a/8=b/15
Đặt a/8=b/15=k
=>a=8k; b=15k
Ta có: \(a^2+b^2=51^2\)
\(\Leftrightarrow289k^2=2601\)
=>k=3
=>a=24; b=45
Bài 6:
Xét ΔABC có \(10^2=8^2+6^2\)
nên ΔABC vuông tại A
Refer:
2,
Ta có:AH là đường cao ΔABC
⇒AH ⊥ BC tại H
⇒∠AHB=∠AHC=90°
⇒ΔAHB và ΔAHC là Δvuông H
Xét ΔAHB vuông H có:
AH² + HB²=AB²(Py)
⇔24² + HB²=25²
⇔ HB²=25² - 24²
⇔ HB²=49
⇒ HB=7(đvđd)
Chứng minh tương tự:HC=10(đvđd)
Ta có:BC=BH + CH=7 + 10=17(đvđd)
Câu 5:
Xét ΔABC có \(5^2=3^2+4^2\)
nên ΔACB vuông tại A
Câu 6:
Xét ΔABC có \(10^2=6^2+8^2\)
nên ΔABC vuông tại A
Bài 7
Gọi độ dài chiều dài, rộng lần lượt là a ; b ( a > b > 0 )
Theo bài ra ta có :
\(\dfrac{a}{15}=\dfrac{b}{8}\Rightarrow\dfrac{a^2}{225}=\dfrac{b^2}{64}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{a^2}{225}=\dfrac{b^2}{64}=\dfrac{a^2+b^2}{225+64}=\dfrac{2601}{289}=9\Rightarrow a=45;b=24\)(tm)
p/s : bạn đăng tách từng câu ra nhé
Gọi 2 cạnh góc vuông lần lượt là x, y.
Theo đề bài ta có
x/8=y/15 => x=8/15.y (1).
Theo định lý Py-ta-go ta có x^2 cộng y^2=51^2 (2).
Thay (1) vào (2) ta có 64/225y^2 cộng y^2=2601 => y^2=2025 => y=45 => x=8/15*45=24 => x cộng y=69.
Vậy tổng hai cạnh góc vuông là 69 cm.
Ai lm giúp mk đi
Áp dụng định lý Pi- ta - gò vào tam giác vuông ABC ta có
BC2 = AB2 + AC2 = 82 + 152 =289
➙ BC = 17