Chứng minh với \(n\)là số tự nhiên chẵn thì \(A=20^n+16^n-3^n-1\)chia hết cho 323
GIÚP MIK VỚI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 323=17.19
+Chứng minh A⋮17
Thật vậy A=20n+16n−3n−1 = (16^n-1)+ (20^n-3^n)
Nhận xét⎨(16n−1)⋮17 (20n−3n)⋮17
⇒A⋮17 (1)
+Chứng minh A⋮19A⋮19
Thật vậy A=20n+16n−3n−1=A=20n+16n−3n−1= (16^n+3^n)+ (20^n-1)
Nhận xét ⎨(16n+3n)⋮19 (20n−1)⋮19
⇒A⋮19 (2)
Mà (17;19)=1(17;19)=1
Từ (1) và (2)⇒A⋮BCNN(17.19)
hay A⋮323 (đpcm)
\(323=17.19\)
+) \(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
\(20^n-1=20^n-1^n⋮\left(20-1\right)=19\)
\(16^n-3^n⋮\left(16+3\right)=19\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮19\)
+) \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
\(20^n-3^n⋮\left(20-3\right)=17\)
\(16^n-1=16^n-1^n⋮\left(16+1\right)=17\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮17\)
Mà \(\left(17,19\right)=1\)
\(\Rightarrow20^n+16^n-3^n-1⋮\left(17.19\right)=323\)
Ta có: 323=17.19 và 20n+16n-3n-1
(20n-10)+(16n-3n) chia hết ho 19 (1)
( vì 20n-1 chia hết cho 20-1=19) và 16n-3n chia hết cho 19 vì n chẵn
Vậy 20n+16n-3n-1 = ( 20n-3n)+(16n-1) chia hết cho 17 (2)
Từ (1) và (2) và ƯCLN(17, 19)=1 suy ra :
(20n+16n-3n-1) chia hết cho 323
Ta thấy :
323=17.19 và (17;19)=1 nên ta cần chứng minh
\(20^n-1+16^n-3^n⋮17\) và \(19\)
Ta có: A = 20n + 16n - 3n - 1
Do n chẵn => n = 2k
Khi đó: A = 202k + 162k - 32k - 1
A = (202k - 1) + (256k - 9k)
Do 202k - 1 \(⋮\)(20 - 1) = 19
256k - 9k \(⋮\)(256 - 9) = 247 \(⋮\)19
=> A \(⋮\)19 (1)
Mặt khác, ta lại có:
A = 202k + 162k - 32k - 1 = (202k - 32k) + (256k - 1)
Do 202k - 32k \(⋮\)(20 - 3) = 17
256k - 1 \(⋮\)(256 - 1)= 255 \(⋮\)17
=> A \(⋮\)17 (2)
Mà (17; 19) = 1 => A \(⋮\)17.19 = 323 (đpcm)
Vì n chẵn
Đặt n = 2k (k \(\inℕ\))
Khi đó A = 20n + 16n - 3n - 1
= 202k + 162k - 32k - 1
= 400k + 256k - 9k - 1
= (400k - 1) + (256k - 9k)
= (400 - 1)(400k - 1 + 400k - 2 + ... + 1) + (256 - 9)(256k - 1 + 256k - 2.9 + ... + 9k - 1)
= 399(400k - 1 + 400k - 2 + ... + 1) + 247(256k - 1 + 256k - 2.9 + ... + 9k - 1)
= 19.21.(400k - 1 + 400k - 2 + ... + 1) + 19.13(256k - 1 + 256k - 2.9 + ... + 9k - 1)
= 19.(21.(400k - 1 + 400k - 2 + ... + 1) + 13(256k - 1 + 256k - 2.9 + ... + 9k - 1)) \(⋮\)19 (1)
Lại có A = 400k + 256k - 9k - 1
= (400k - 9k) + (256k - 1)
= (400 - 9)(400k - 1 + 400k - 2.9 + .... + 9k - 1) + (256 - 1)(256k - 1 + 256k - 2 + .... + 1)
= 391(400k - 1 + 400k - 2.9 + .... + 9k - 1) + 255(256k - 1 + 256k - 2 + .... + 1)
= 17.23(400k - 1 + 400k - 2.9 + .... + 9k - 1) + 17.15(256k - 1 + 256k - 2 + .... + 1)
= 17.(23(400k - 1 + 400k - 2.9 + .... + 9k - 1) + 15(256k - 1 + 256k - 2 + .... + 1)) \(⋮\)17 (2)
Lại có ƯCLN(17;19) = 1 (3)
Từ (1)(2)(3) => A \(⋮17.19=323\)(ĐPCM)