K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(A=7+7^2+7^3+...+7^{4k}\)

\(=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

\(=\left(7+7^2+7^3+7^4\right)+...+7^{4k-4}\left(7+7^2+7^3+7^4\right)\)

\(=\left(7+7^2+7^3+7^4\right)\left(1+...+7^{4k-4}\right)\)

\(=2800\left(1+...+7^{4k-4}\right)\)

\(=350.8\left(1+...+7^{4k-4}\right)⋮8\)

\(\Rightarrow A⋮8\left(1\right)\)

Ta lại có : \(A=7+7^2+7^3+...+7^{4k}\)

\(\Rightarrow7A=7^2+7^3+7^4+...+7^{4k+1}\)

\(\Rightarrow7A-A=\left(7^2+7^3+7^4+...+7^{4k+1}\right)-\left(7+7^2+7^3+....+7^{4k}\right)\)

hay \(6A=7^{4k+1}-7=7\left(7^{4k}-1\right)\)

Vì \(7\equiv2\left(mod5\right)\)\(\Rightarrow7^{4k}\equiv2^{4k}=16^k\left(mod5\right)\)

mà \(16\equiv1\left(mod5\right)\)\(\Rightarrow16^k\equiv1^k=1\left(mod5\right)\)

\(\Rightarrow7^{4k}\equiv1\left(mod5\right)\)

\(\Rightarrow7^{4k}-1⋮5\left(\cdot\right)\)

\(\Rightarrow7\left(7^{4k}-1\right)⋮5\)

\(\Rightarrow6A⋮5\)

Nhưng \(\left(6;5\right)=1\)

\(\Rightarrow A⋮5\left(2\right)\)

Ta lại có tiếp : \(7\equiv1\left(mod2\right)\)

\(\Rightarrow7^{4k}\equiv1^{4k}=1\left(mod2\right)\)

\(\Rightarrow7^{4k}-1⋮2\left(\cdot\cdot\right)\)

Từ \(\left(\cdot\right)\)\(\left(\cdot\cdot\right)\) và \(\left(2;5\right)=1\)\(\Rightarrow7^{4k}-1⋮10\)

\(\Rightarrow7\left(7^{4k}-1\right)⋮10\)

\(\Rightarrow6A⋮10\)

Nhưng \(\left(6;10\right)=1\)

\(\Rightarrow A⋮10\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)và \(\left(5;8;10\right)=1\)

\(\Rightarrow A⋮400\left(đpcm\right)\)

25 tháng 3 2016

Nhóm các hạng tử của tổng đã cho theo dạng sau:

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

     \(=\left(7+7^2+7^3+7^4\right)+7^4\left(7+7^2+7^3+7^4\right)+...+7^{4k-4}\left(7+7^2+7^3+7^4\right)\)

     \(=\left(7+7^2+7^3+7^4\right)\left(1+7^4+7^8+...+7^{4k-4}\right)\)

     \(=7\left(1+7+7^2+7^3\right)\left(1+7^4+7^8+...+7^{4k-4}\right)\)

\(A=7\left(1+7+49+343\right)\left(1+7^4+7^8+...+7^{4k-4}\right)=7.400.B\)

Vậy,   \(A\)  chia hết cho  \(400\)

22 tháng 2 2018

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

\(A=\left(7+7^2+7^3+7^4\right)+7^4\left(7+7^2+7^3+7^4\right)+7^{4k-4}\left(7+7^2+7^3+7^4\right)\)

\(A=\left(7+7^2+7^3+7^4\right)\left(1+7+7^4+7^8+...+7^{4k-4}\right)\)

\(A=7\left(1+7+49+343\right)\left(1+7^4+7^8+...+7^{4k-4}=7.400.M\right)\)

vậy \(A⋮400\)

10 tháng 9 2018

a) Ta có: ( 3 n   -   1 ) 2  - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).

Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên  ( 3 n   -   1 ) 2  - 4 chia hết cho 3 với mọi số tự nhiên n;

b) Ta có: 100 - ( 7 n   +   3 ) 2  =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.

3 tháng 11 2024

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$

`2A - A = - 1 + 2^42`$\\$

hay `A = -1 + 2^42`$\\$

3 tháng 11 2024

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$

`2A - A = - 1 + 2^{42}`$\\$

hay `A = -1 + 2^{42}`$\\$

20 tháng 1 2019

Dùng phép quy nạp toán học (lớp 6)

Với k = 0: \(2^{3k+1}+5=2^1+5=7⋮7\Rightarrow\)Mệnh đề đúng với k = 1(1)

Giả sử điều đó đúng với k = t tức là \(2^{3t+1}+5⋮7\)(đây là giả thiết qui nạp)  (2)

Ta sẽ c/m điều đó cũng đúng với k = t + 1.Tức là c/m:

\(2^{3\left(t+1\right)+1}+5⋮7\)hay \(2^{3t+4}+5⋮7\)

Ta có: \(2^{3t+4}+5=2^3\left(2^{3t+1}+5\right)-35\)

Dễ dàng thấy: \(2^3\left(2^{3t+1}+5\right)⋮7\) (do giả thiết qui nạp)

\(35⋮7\) (hiển nhiên)

Suy ra \(2^3\left(2^{3t+1}+5\right)-35⋮7\)hay \(2^{3t+4}+5⋮7\) hay \(2^{3\left(t+1\right)+1}+5⋮7\) (3)

Từ (1);(2) và (3) theo nguyên lí quy nạp toán học,ta có điều phải c/m

22 tháng 1 2019

\(2^{3k+1}+5=2^{3k}.2+5=8^k.2+5\)

Ta có: 8 chia 7 dư 1 => \(8^k\)chia 7 dư 1 (vì (7,8)=1)

Đặt: \(8^k\)=7t+1

=> \(2^{3k+1}+5=\)(7t+1).2+5=7t.2+7 chia hết cho 7

10 tháng 6 2017

7 + 72 + 73 + ... + 74k

= [7 + 72 + 73 + 74] + 74[7 + 72 + 73 + 74] + .... + 74k-4[7 + 72 + 73 + 74]

= 2800 + 74.2800 + .... + 74k-4. 2800

= 7.400 [70 + 74 + ... + 74k-4\(⋮400\)

16 tháng 6 2020

mình ko bít làm