Một người đi từ A đến B gồm 2 đoạn Ab và CB hết thời gian là 4h30ph. Tính quãng đường AC, CB biết rằng vận tốc người đó đi trên qquangx đường AC là 30km/h, đi trên quãng đường CB là 20km/h và quãng đường Ac dài hơn CB là 10km
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài quãng đường AC là x
=>Độ dài CB là x+20
Theo đề, ta có: x/30+(x+20)/20=4+1/3=13/3
=>x/30+x/20=13/3-1=10/3
=>x=40
=>CB=60km
Lời giải:
Đổi 4h30 = $4,5$ h
Vận tốc trên quãng đường CB là $a$ km/h thì vận tốc trên $AC$ là $a+20$ (km/h)
Quãng đường $AC=BC+10$ (km)
Tổng thời gian đi quãng đường AB: $\frac{AC}{v_{AC}}+\frac{CB}{v_{CB}}=4,5$
$\Leftrightarrow \frac{BC+10}{a+20}+\frac{BC}{a}=4,5$
Khai thác được đến đây thì không biết bạn muốn tìm cái gì?
Ta có: 4 giờ 20 phút= 13/3 giờ
Gọi độ dài quãng đường AC là x(km)
Gọi độ dài quãng đường CB là y(km)
Điều kiện x > 0 và y > 20
Lúc đó thời gian người đi xe máy đi trên quãng đường AC là x/30 (giờ)
Thời gian người đi xe máy đi trên quãng đường CB là y/20 (giờ)
Theo đề bài, thời gian cả thảy đi từ A đến B là 4 giờ 20 phút nên ta có phương trình:
Vì quãng đường AB ngắn hơn quãng đường BC là 20 km nên ta có phương trình: y – x = 20 (2)
Từ (1) và (2) ta có hệ phương trình:
Vậy quãng đường AC dài 40km, quãng đường CB dài 60km.
Lời giải:
Đổi $4h30'=4,5$h
Thời gian đi quãng đường $AC$: $\frac{AC}{30}$ (h)
Thời gian đi quãng đường $CB$: $\frac{CB}{20}=\frac{AC-10}{20}$ (h)
Ta có:
$\frac{AC}{30}+\frac{AC-10}{20}=4,5$$\Leftrightarrow \frac{AC}{12}=5\Rightarrow AC=60$ (km)
$CB=60-10=50$ (km)
Lời giải:
Đổi $4h30'=4,5$h
Thời gian đi quãng đường $AC$: $\frac{AC}{30}$ (h)
Thời gian đi quãng đường $CB$: $\frac{CB}{20}=\frac{AC-10}{20}$ (h)
Ta có:
$\frac{AC}{30}+\frac{AC-10}{20}=4,5$$\Leftrightarrow \frac{AC}{12}=5\Rightarrow AC=60$ (km)
$CB=60-10=50$ (km)