tính tổng dãy số sau: n + n^2 + n*n*n^2-n^4*n,6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
=>\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
=>\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
=>\(A=1-\frac{1}{1024}=\frac{1023}{1024}\)
Để đánh số trang một quyển sách dày 295 trang cần dùng bao nhiêu chữ số?
a:
#include <bits/stdc++.h>
using namespace std;
long long i,n,s;
int main()
{
cin>>n;
s=0;
for (i=1; i<=n; i++) s=s+i;
cout<<s;
return 0;
}
Câu 1:
uses crt;
var a:array[1..100]of integer;
i,n,s:integer;
begin
clrscr;
write('Nhap n='); readln(n);
for i:=1 to n do
begin
write('A[',i,']='); readln(a[i]);
end;
s:=0;
for i:=1 to n do
s:=s+a[i];
writeln(s);
readln;
end.
Câu 2:
uses crt;
var a:array[1..100]of integer;
i,n,j,tam:integer;
begin
clrscr;
write('Nhap n='); readln(n);
for i:=1 to n do
begin
write('A[',i,']='); readln(a[i]);
end;
for i:=1 to n-1 do
for j:=i+1 to n do
if a[i]>a[j] then
begin
tam:=a[i];
a[i]:=a[j];
a[j]:=tam;
end;
for i:=1 to n do
write(a[i]:4);
readln;
end.
a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] : 3
a) Ta có: \({u_{n + 1}} = \frac{{{{\left( {n + 1} \right)}^2}}}{{n + 1 + 1}} = \frac{{{{\left( {n + 1} \right)}^2}}}{{n + 2}}\)
Xét hiệu \({u_{n + 1}} - {u_n} = \frac{{{{\left( {n + 1} \right)}^2}}}{{n + 2}} - \frac{{{n^2}}}{{n + 1}} = \frac{{{{\left( {n + 1} \right)}^3} - {n^2}\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{{{n^3} + 3{n^2} + 3n + 1 - {n^3} - 2{n^2}}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\)
\( = \frac{{{n^2} + 3n + 1}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0\) với mọi n ∈ ℕ*.
Vì vậy dãy số đã cho là dãy số tăng.
b) Ta có: \({u_{n + 1}} = \frac{2}{{{5^{n + 1}}}}\)
Xét hiệu \({u_{n + 1}} - {u_n} = \frac{2}{{{5^{n + 1}}}} - \frac{2}{{{5^n}}} = - \frac{4}{5}.\frac{2}{{{5^n}}} = - \frac{8}{{{5^{n + 1}}}} < 0\)
Vì vậy dãy số đã cho là dãy số giảm.
Câu 6:
uses crt;
var n,i:integer;
begin
clrscr;
readln(n);
for i:=1 to n do
if n mod i=0 then write(i:4);
readln;
end.
5:
uses crt;
var n,i,dem:integer;
begin
clrscr;
readln(n);
dem:=0;
for i:=0 to n do
if i mod 2=1 then
begin
write(i:4);
dem:=dem+1;
end;
writeln;
writeln(dem);
readln;
end.
1:
#include <bits/stdc++.h>
using namespace std;
long long n,i,dem,x;
int main()
{
cin>>n;
dem=0;
for (i=1; i<=n; i++)
{
cin>>x;
if (x==0) dem++;
}
cout<<dem;
return 0;
}