Giải hệ phương trình bằng phương pháp thế
\(\begin{cases} x-y=m\\ 2x+y=4 \end{cases}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)
\(2y=-4\Rightarrow y=-2\)
\(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )
2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>
\(x+3x-2=6\)
\(4x=8\Rightarrow x=2\)
\(\Rightarrow y=6-2=4\)
3) \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2
\(3x-5+x=3\)
\(4x=8\Rightarrow x=2\)
\(2y=3\Rightarrow y=\frac{3}{2}\)
4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )
\(5+y+3y=1\)
\(4y=-4\Rightarrow y=-1\)
\(\Rightarrow2x=4\Rightarrow x=2\)
mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...
a ) \(\begin{cases}3x-y=5\\5x+2y=23\end{cases}\)
Từ phương trình \(\left(1\right)\) \(\Leftrightarrow y=3x-5\) \(\left(3\right)\)
Thế \(\left(3\right)\) vào phương trình \(\left(2\right)\) : \(5x+2\left(3x-5\right)=23\)
\(\Leftrightarrow5x+6x-10=23\Leftrightarrow11x=33\Leftrightarrow x=3\)
Từ đó \(y=3.3-5=4\)
Vậy hệ có nghiệm \(\left(x;y\right)=\left(3;4\right)\)
b ) \(\begin{cases}3x+5y=1\\2x-y=-8\end{cases}\)
Từ hệ phương trình \(\left(2\right)\) \(\Leftrightarrow y=3x+8\)
Thế (3) vào (1): \(3x+5\left(2x+8\right)=1\Leftrightarrow3x+10x+40=1\Leftrightarrow13x=-39\)
\(\Leftrightarrow x=-3\)
Từ đó \(y=2\left(-3\right)+8=2\)
Vậy hệ có nghiệm \(\left(x;y\right)=\left(-3;2\right)\)
\(\hept{\begin{cases}x+y=4\left(1\right)\\2x+3y=m\left(2\right)\end{cases}}\)
từ \(\left(1\right)\)ta có: \(x=4-y\)\(\left(3\right)\)
thay \(\left(3\right)\) vào \(\left(2\right)\)ta được
\(2.\left(4-y\right)+3y=m\)
\(8-2y+3y=m\)
\(8+y=m\)
\(y=m-8\) \(\left(4\right)\)
hệ phương trình có nghiệm duy nhất khi pt \(\left(4\right)\) có nghiệm duy nhất
ta thấy pt (4) luôn có nghiệm duy nhất với \(\forall y\in R\)
vậy \(\forall y\in R\)thì hệ pt đã cho có nghiệm \(\left(x;y\right)=\left(4-y;m-8\right)\)
theo bài ra \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4-y>0\\m-8< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}y>4\\m< 8\end{cases}}\)
vậy \(m< 8\) là tập hợp các giá trị cần tìm
Ta có :
\(\hept{\begin{cases}x+y=4\\2x+3y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=4\\x+x+y+y+y=m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\4+4+y=m\end{cases}\Leftrightarrow\hept{\begin{cases}y=4-x\\8+4-x=m\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=4-12+m\\x=12-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=m-8\\x=12-m\end{cases}}\)
\(\Leftrightarrow\)\(x+y=m-8+12-m=4\)
\(\Leftrightarrow\hept{\begin{cases}y=4-8\\x=12-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=-4\\x=8\end{cases}}}\)
Thoả mãn \(x>0;y< 0\)
Vậy \(x=8\) và \(y=-4\)
Rút y ở phương trình thứ nhất, rồi thay vào phương trình thứ hai để tìm x.
Từ phương trình thứ nhất ta có:
\(y=13+4x\)(*)
Thay y vào phương trình thứ hai ta có:
\(-4+2\left(13+4x\right)=22\)
Từ đó tự tính: Nếu mày đã học nghiệm rồi
\(x=-1\)
Thay x vào (*) ta tìm y:
\(y=13+4.\left(-1\right)\)
Vậy hiệu nghiệm của hệ phương trình này là:
\(\hept{\begin{cases}x=-1\\y=9\end{cases}}\)
Ta có :
\(\hept{\begin{cases}4x-y=13\\-4x+2y=22\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x=13+y\\-\left(13+y\right)+2y=22\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x=13+y\\-13-y+2y=22\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x=13+y\\-13+y=22\end{cases}}\Leftrightarrow\hept{\begin{cases}4x=13+y\\y=35\end{cases}\Leftrightarrow\hept{\begin{cases}4x=13+35\\y=35\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}4x=48\\y=35\end{cases}\Leftrightarrow\hept{\begin{cases}x=12\\y=35\end{cases}}}\)
\(\left\{{}\begin{matrix}x-y=m\left(1\right)\\2x+y=4\left(2\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow x=y+m\)
Thay \(x=y+m\) vào (2) ta được:
\(2\left(y+m\right)+y=4\\ \Leftrightarrow2y+2m+y=4\\ \Leftrightarrow3y=4-2m\\ \Leftrightarrow y=\dfrac{4-2m}{3}\)
Thay \(y=\dfrac{4-2m}{3}\) vào (1) ta được:
\(x-\dfrac{4-2m}{3}=m\\ \Leftrightarrow\dfrac{3x}{3}-\dfrac{4-2m}{3}=\dfrac{3m}{3}\\ \Leftrightarrow3x-4+2m=3m\\ \Leftrightarrow3x=m+4\\ \Leftrightarrow x=\dfrac{m+4}{3}\)
Vậy hpt có nghiệm là \(\left(x;y\right)=\left(\dfrac{m+4}{3};\dfrac{4-2m}{3}\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x-m\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x-m\\2x+x-m=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x-m\\3x=m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x-m\\x=\dfrac{m+4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+4}{3}\\y=\dfrac{-2m+4}{3}\end{matrix}\right.\)