Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y=m(x-2)+1
=>m(x-2)-y+1=0
Điểm mà (d) luôn đi qua có tọa độ là:
x-2=0 và 1-y=0
=>x=2 và y=1
a: Thay x=-2 và y=1 vào y=mx+2m+1, ta được:
\(m\cdot\left(-2\right)+2m+1=1\)
=>2m-2m+1=1
=>1=1(luôn đúng)
Vậy: Đường thẳng y=mx+2m+1 luôn đi qua A(-2;1)
b: Thay x=-1 và y=1 vào y=(m-1)x+m, ta được:
\(\left(-1\right)\left(m-1\right)+m=1\)
=>-m+1+m=1
=>1=1(đúng)
vậy: Đường thẳng y=(m-1)x+m luôn đi qua B(-1;1)
Gọi 2 điểm cố định là \(A\left(x_0;y_0\right)\)
Thay vào ptđt (d) ta được : \(y_0=mx_0+m+1\Leftrightarrow mx_0+m+1-y_0=0\)
\(\Leftrightarrow m\left(x_0+1\right)+\left(1-y_0\right)=0\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x_0+1=0\\1-y_0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=1\end{cases}}\Rightarrow A\left(-1;1\right)\)
Vậy d luôn đi qua 1 điểm cố định A(-1;1)
Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình :
14.x2=x−114.x2=x−1
<=> x2 = 4x - 4
<=> x2 - 4x + 4 = 0 <=> (x - 2)2 = 0 <=> x - 2= 0 <=> x = 2
=> y = 2-1 = 1
Vậy (P) cắt (d) tại 1 điểm duy nhất là (2;1)
=> đpcm
đúng ko ?????????????
sai thì cho mik xin lỗi
Chứng minh họ đường thẳng y = mx + (2m + 1) (1) luôn đi qua một điểm cố định nào đó.
Giả sử điểm A( x o ; y o ) là điểm mà họ đường thẳng (1) đi qua với mọi m. Khi đó tọa độ điểm A nghiệm đúng phương trình hàm số (1).
Với mọi m, ta có: y o = m x o + (2m + 1) ⇔ ( x o + 2)m + (1 – y) = 0
Vì phương trình nghiệm đúng với mọi giá trị của m nên tất cả các hệ số phải bằng 0.
Suy ra: x o + 2 = 0 ⇔ x o = -2
1 – y o = 0 ⇔ y o = 1
Vậy A(-2; 1) là điểm cố định mà họ đường thẳng y = mx + (2m + 1) luôn đi qua với mọi giá trị m.
Gọi \(M\left(x_o;y_o\right)\) là điểm cố định mà đường thẳng \(\left(dm\right):y=mx-2m+1\) luôn đi qua
\(\Leftrightarrow y_o=mx_o+2m+1\)
\(\Leftrightarrow m\left(x_o+2\right)+1-y_o=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_o+2=0\\1-y_o=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_o=-2\\y_o=1\end{matrix}\right.\)
\(\Leftrightarrow M\left(-2;1\right)\) là điểm cố định mà đường thẳng \(\left(dm\right)\) luôn đi qua \(\left(đpcm\right)\)