Nghiệm nhỏ nhất của phương trình x3 - 6x2 - 25x - 18 = 0
(ghi cach giai rõ ràng dùm mình)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(x^3-6x^2-25x-18=0\Leftrightarrow x^3+2x^2-8x^2-16x-9x-18=0\Leftrightarrow x^2\left(x+2\right)-8x\left(x+2\right)-9\left(x+2\right)=0\)\(\Leftrightarrow\left(x+2\right)\left(x^2+x-9x-9\right)=0\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(x-9\right)=0\)
Vậy x=-2;-1;9 hay x min = -2
\(x^3-6x^2-25x-18=0\)
<=> \(x^3-9x^2+3x^2-27x+2x-18=0\)
<=> \(x^2\left(x-9\right)+3x\left(x-9\right)+2\left(x-9\right)=0\)
<=> \(\left(x-9\right)\left(x^2+3x+2\right)=0\)
<=> \(\left(x-9\right)\left(x+1\right)\left(x+2\right)=0\)
..................
làm nốt
\(x^3-6x^2-25x-18=0\)
\(\Leftrightarrow x^2\left(x+1\right)-7x\left(x+1\right)-18\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-7x-18\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2x-9x-18\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x\left(x+2\right)-9\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x+2=0\\x-9=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=-2\\x=9\end{array}\right.\)
Vậy nghiệm nhỏ nhất của phương trình là \(-2\)
Đáp án B
Ta có f x = x x − 3 2 ; f x = 0 ⇔ x = 0 x = 3 .
Gọi a k là số nghiệm của phương trình f k x = 0 và b k là số nghiệm của phương trình f k x = 3.
Khi đó a k = a k − 1 + b k − 1 b k = 3 k k ∈ ℕ * , k ≥ 2
suy ra a n = a n − 1 + 3 n − 1 → a n = a 1 + 3 n − 3 2 * .
Mà a 1 = 2 nên suy ra * ⇔ a n = 2 + 3 n − 3 2 = 3 n + 1 2 .
Với n = 6 ⇒ f 6 x = 0 có 3 6 + 1 2 = 365 nghiệm.
Ta có:x^3-6x^2-25x-18=0 <=> x^3+2x^2-8x^2-16x-9x-18=0
<=> x^2 (x+2)-8x(x+2)-9(x+2)=0 <=> (x+2)(x2+x−9x−9)=0⇔(x+2)(x+1)(x−9)=0
Vậy x=-2;-1;9 hay x min = -2
chúc cậu năm mới vui vẻ