Cho tg ABC cân tại A, có góc A < 90*, kẻ BH vuông góc với AC, CK vuông góc với AC. gọi O là giao điểm của BH và CK.
a, cm tg ABH= tg ACH.
b,tg OBC cân
c, tg OBK=tgOCK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABH và tam giác ACK có
AB = AC ; ^A _ chung
Vậy tam giác ABH = tam giác ACK (ch-gn)
=> ^ABH = ^ACK
b, Ta có ^B = ^C ; ^ABH = ^ACK
=> ^OBC = ^OCB
Vậy tam giác OBC cân tại O
c, Xét tan giác OBK và tam giác OCH
^BOK = ^COH (đối đỉnh) ; ^OBK = ^OCH (cmt) ; ^OKB = ^OHC = 900
Vậy tam giác OBK = tam giác OCH (g.g.g)
a: Xet ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc BAH chung
=>ΔABH=ΔACK
b: ΔABH=ΔACK
=>góc ABH=góc ACK
=>góc OBC=góc OCB
=>ΔOBC cân tại O
c: Xét ΔOKB vuông tại K và ΔOHC vuông tại H có
OB=OC
BK=CH
=>ΔOKB=ΔOHC
d: Xet ΔBCA có AH/AC=AK/AB
nên HK//BC
a: Xet ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc BAH chung
=>ΔABH=ΔACK
b: ΔABH=ΔACK
=>góc ABH=góc ACK
=>góc OBC=góc OCB
=>ΔOBC cân tại O
c: Xét ΔOKB vuông tại K và ΔOHC vuông tại H có
OB=OC
BK=CH
=>ΔOKB=ΔOHC
d: Xet ΔBCA có AH/AC=AK/AB
nên HK//BC
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK
b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
KC=HB
Do đó: ΔKBC=ΔHCB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
hay ΔOCB cân tại O
c: Xét ΔOBK vuông tại K và ΔOCH vuông tại H có
OB=OC
KB=HC
Do đó: ΔOBK=ΔOCH
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK
b: Xét ΔOBK vuông tại K và ΔOCH vuông tại H có
KB=HC
\(\widehat{KBO}=\widehat{HCO}\)
Do đó:ΔOBK=ΔOCH
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
b: Ta có: ΔAHB=ΔAKC
=>AH=AK và \(\widehat{ABH}=\widehat{ACK}\)
Ta có: AH+HC=AC
AK+KB=AB
mà AH=AK và AC=AB
nen HC=KB
Xét ΔOKB vuông tại K và ΔOHC vuông tại H có
KB=HC
\(\widehat{KBO}=\widehat{HCO}\)
Do đó: ΔOKB=ΔOHC
c: ta có; ΔOKB=ΔOHC
=>OB=OC
=>O nằm trên đường trung trực của BC(1)
ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
ta có: IB=IC
=>I nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,I thẳng hàng
a)Vì ABC cân tại A (gt) => AB = AC (TC Tg cân)
BH vg góc AC (gt) => ^AHB=^CHB = 90o
CK vg góc AB (gt) => ^AKC=^BKC = 90o
Xét tg ABH và tg ACK:
^AHB = ^AKC (= 90)
^A chung
AB = AC (cmt)
=> tg ABH = tg ACK (ch - gn)
b) Xét tg BKC và tg CHB :
^BKC = ^CHB (=90)
BC chung
^B = ^C (tg ABC cân tại A)
=> tg BKC và tg CHB (ch - gn)
=> ^KCB = ^HBC (2 góc tương ứng)
hay ^OBC = ^OCB
=> tg OBC cân tại O (đpcm)
c) tg BKC và tg CHB (cmt) => BK = CH (2 cạnh tương ứng)
Ta có: ^B = ^ABH + ^CBH
^C = ^ACK + ^BCK
Mà ^B = ^C (tg ABC cân tại A); ^CBH = ^BCK(cmt)
=> ^ABH = ^ACK
Xét tg OBK và tgOCK:
^BKO = ^CHO (=90)
BK = CH (cmt)
^KBO = ^HCO (^ABH = ^ACK)
=> tg OBK = tg OCK (gcg)
a) Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)
b) Ta có: ΔABH=ΔACK(cmt)
nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)
Ta có: \(\widehat{ABH}+\widehat{CBH}=\widehat{ABC}\)(tia BH nằm giữa hai tia BA,BC)
\(\widehat{ACK}+\widehat{BCK}=\widehat{ACB}\)(tia CK nằm giữa hai tia CA,CB)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy trong ΔABC cân tại A)
và \(\widehat{ABH}=\widehat{ACK}\)(cmt)
nên \(\widehat{CBH}=\widehat{BCK}\)
hay \(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)
nên ΔOBC cân tại O(Định lí đảo của tam giác cân)
c)
Sửa đề: ΔOBK=ΔOCH
Xét ΔOBK vuông tại K và ΔOCH vuông tại H có
OB=OC(ΔOBC cân tại O)
\(\widehat{OBK}=\widehat{OCH}\)(cmt)
Do đó: ΔOBK=ΔOCH(cạnh huyền-góc nhọn)