cho tam giác ABC cân tại A (A < 90 độ) kẻ BĐ vuông góc AC tại D.kẻ CE vuông góc AB tại E
a) C/m tam giác ADE cân
b)C/m DE // BC gọi I là giao điểm của BĐ và C/m IB=IC
(Ai giúp mik cần gấp cảm ơn mọi người)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
⇒AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b) Ta có: ΔADE cân tại A(cmt)
nên \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AED}=\widehat{ABC}\)
mà \(\widehat{AED}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên ED//BC(Dấu hiệu nhận biết hai đường thẳng song song)
c) Ta có: ΔABD=ΔACE(cmt)
nên \(\widehat{ABD}=\widehat{ACE}\)(hai góc tương ứng)
hay \(\widehat{EBI}=\widehat{DCI}\)
Ta có: AE+EB=AB(E nằm giữa A và B)
AD+DC=AC(D nằm giữa A và C)
mà AE=AD(cmt)
và AB=AC(ΔABC cân tại A)
nên EB=DC
Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC(cmt)
\(\widehat{EBI}=\widehat{DCI}\)(cmt)
Do đó: ΔEBI=ΔDCI(cạnh góc vuông-góc nhọn kề)
⇒IB=IC(hai cạnh tương ứng)
a) Xét tam giác ADB và tam giác AEC có:
AB=AC (gt)
A là góc chung
góc E = góc D =90 độ
=> tam giác ADB= tam giác AEC ( cạnh huyền góc nhọn)
=> AE = AD ( 2 cạnh tương ứng)
=> tam giác ADE cân tại A
b) Ta có: tam giác ADE can tại A ( cmt)
góc E1 = góc D1= 180 độ - góc A : 2 ( góc A + góc D1 + góc E1 = 180 độ)
góc B= góc C= 180 độ - góc A : 2 ( gt)
=> góc E1= góc B ( 2 góc tương ứng)
Mà góc E1 = góc B ( 2 góc tương ứng)
=> DE//BC
c) Ta có: EB= AB - AE
DC= AC - AD
mà AB = AC (gt)
AE = AD ( cma)
=> EB=DC
xét tam giác EIB và tam giác DIC có:
góc E = góc D= 90 độ ( gt)
góc B1 = góc C1 ( tam giác AEC = tam giác ADB)
EB = DC ( cmt)
=> tam giác EIB = tam giác DIC ( g.c.g)
=> IB - IC ( 2 cạnh tương ứng)