K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2021

ra r nha

24 tháng 1 2021

Như nào vậy?

AH
Akai Haruma
Giáo viên
28 tháng 5 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(a^2+\frac{1}{b^2}\right)(1+1)\geq (a+\frac{1}{b})^2\)

\(\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{a+\frac{1}{b}}{\sqrt{2}}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{d^2}}+\sqrt{d^2+\frac{1}{a^2}}\geq \frac{1}{\sqrt{2}}(a+b+c+d+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})\)

Mặt khác theo BĐT Cauchy:

\(a+\frac{1}{a}\geq 2; b+\frac{1}{b}\geq 2; c+\frac{1}{c}\geq 2; d+\frac{1}{d}\geq 2\)

\(\Rightarrow \text{VT}\geq \frac{1}{\sqrt{2}}.8=4\sqrt{2}\)

Vậy giá trị nhỏ nhất của biểu thức là $4\sqrt{2}$. Dấu bằng xảy ra khi $a=b=c=d=1$

2 tháng 1 2022

Áp dụng BĐT Minicopski, ta có:

\(P=\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{b^2+\dfrac{1}{b^2}}\ge\sqrt{\left(a+b\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2}\\ \Rightarrow P\ge\sqrt{4^2+\left(\dfrac{4}{a+b}\right)^2}=\sqrt{16+\left(\dfrac{4}{4}\right)^2}=\sqrt{17}\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=2\)

2 tháng 1 2022

Áp dụng BĐT Cô si

⇒ P≥ \(\sqrt{2\sqrt{a^2.\dfrac{1}{a^2}}}+\sqrt{2\sqrt{b^2.\dfrac{1}{b^2}}}\)

\(=\sqrt{2}+\sqrt{2}\)

\(=2\sqrt{2}\)

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

NV
20 tháng 2 2020

\(A=\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{a}+\frac{1}{b}\right)^2}\)

\(A\ge\sqrt{\left(a+b\right)^2+\frac{16}{\left(a+b\right)^2}}=\sqrt{17}\)

Dấu "=" xảy ra khi \(a=b=2\)

NV
11 tháng 10 2020

\(P\ge\frac{1}{\sqrt{ab+bc+ca+c^2}}+\frac{1}{\sqrt{ab+bc+ca+c^2}}=\frac{2}{\sqrt{ab+bc+ca+c^2}}\)

\(P\ge\frac{2}{\sqrt{\left(a+c\right)\left(b+c\right)}}=\frac{4\sqrt{2}}{2\sqrt{\left(a+c\right)\left(2b+2c\right)}}\ge\frac{4\sqrt{2}}{a+c+2b+2c}=\sqrt{2}\)

\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(2;1;0\right)\)