cho hinh tam giac ABC diem D nam tren canh AC diem E nam tren canh BC sao cho AD bang DC Be bang 3/2 EC cac doan thang AE va BD cat nhau o K
a. BK gap may lan KD
biet dien tich ABC bang 80m2 .tinh dien tich DKEC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Muốn tính KB/KD ta tính S(AKB)/S(AKD), trong đó ký hiệu S( ) là diện tích.
S(AKB)/S(AKC) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy AK).
S(KBE)/S(KCE) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy KE).
=> S(AKB)/S(AKC) = S(KBE)/S(KCE)
Mà S(KBE)/S(KCE) =BE/CE = 3/2 (vì hai tam giác chung đường cao hạ từ K xuống BC)
=> S(AKB)/S(AKC) = 3/2
Mặt khác S(AKC) = 2. S(AKD) (vì hai tam giác chung đường cao hạ K và đáy AKC gấp đôi đáy AKD)
=> S(AKB)/ [2S(AKD)] = 3/2
=> S(AKB)/S(AKD) = 3
=> KB/KD = 3
b) S(ABC) =80 => S(BDC) = 1/2 . 80 = 40
Vì KB = 3 KD => S(KBC) = 3/4 S(BDC) = 3/4 . 40 = 30
Và S(KDC) = 1/4 S(BDC) = 1/4. 40 = 10
Ta lại có vì EC/EB = 2/3 => EC/BC = 2/5 => S(KCE) = 2/5 S(KBC) = 2/5 . 30 = 12
Vậy S(KDCE) = S(KCE) + S(KDC) = 12 + 10 = 22 cm2
Muốn tính KB/KD ta tính S(AKB)/S(AKD), trong đó ký hiệu S( ) là diện tích.
S(AKB)/S(AKC) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy AK).
S(KBE)/S(KCE) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy KE).
=> S(AKB)/S(AKC) = S(KBE)/S(KCE)
Mà S(KBE)/S(KCE) =BE/CE = 3/2 (vì hai tam giác chung đường cao hạ từ K xuống BC)
=> S(AKB)/S(AKC) = 3/2
Mặt khác S(AKC) = 2. S(AKD) (vì hai tam giác chung đường cao hạ K và đáy AKC gấp đôi đáy AKD)
=> S(AKB)/ [2S(AKD)] = 3/2
=> S(AKB)/S(AKD) = 3
=> KB/KD = 3
b) S(ABC) =80 => S(BDC) = 1/2 . 80 = 40
Vì KB = 3 KD => S(KBC) = 3/4 S(BDC) = 3/4 . 40 = 30
Và S(KDC) = 1/4 S(BDC) = 1/4. 40 = 10
Ta lại có vì EC/EB = 2/3 => EC/BC = 2/5 => S(KCE) = 2/5 S(KBC) = 2/5 . 30 = 12
Vậy S(KDCE) = S(KCE) + S(KDC) = 12 + 10 = 22 cm2
Muốn tính KB/KD ta tính S(AKB)/S(AKD), trong đó ký hiệu S( ) là diện tích.
S(AKB)/S(AKC) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy AK).
S(KBE)/S(KCE) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy KE).
=> S(AKB)/S(AKC) = S(KBE)/S(KCE)
Mà S(KBE)/S(KCE) =BE/CE = 3/2 (vì hai tam giác chung đường cao hạ từ K xuống BC)
=> S(AKB)/S(AKC) = 3/2
Mặt khác S(AKC) = 2. S(AKD) (vì hai tam giác chung đường cao hạ K và đáy AKC gấp đôi đáy AKD)
=> S(AKB)/ [2S(AKD)] = 3/2
=> S(AKB)/S(AKD) = 3
=> KB/KD = 3
b) S(ABC) =80 => S(BDC) = 1/2 . 80 = 40
Vì KB = 3 KD => S(KBC) = 3/4 S(BDC) = 3/4 . 40 = 30
Và S(KDC) = 1/4 S(BDC) = 1/4. 40 = 10
Ta lại có vì EC/EB = 2/3 => EC/BC = 2/5 => S(KCE) = 2/5 S(KBC) = 2/5 . 30 = 12
Vậy S(KDCE) = S(KCE) + S(KDC) = 12 + 10 = 22 cm2