Giải và biện luận phương trình sau
m ( x-1) = 5 - (m-1) x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình có nghiệm duy nhất thì m<>1
Để phương trình có vô số nghiệm thì m=1
Để phương trình vô nghiệm thì m=-1
Bất phương trình tương đương với:
\(\left(m+2\right)x< m^2-4\)(1)
Với \(m+2=0\Leftrightarrow m=-2\)(1) tương đương với:
\(0x< 0\)(vô nghiệm)
Với \(m+2< 0\Leftrightarrow m< -2\)(1) tương đương với:
\(x>\frac{m^2-4}{m+2}=m-2\)
Với \(m+2>0\Leftrightarrow m>-2\) (1) tương đương với:
\(x< \frac{m^2-4}{m+2}=m-2\)
ĐKXĐ: \(x\ne-1\)
Ta có:
\(\dfrac{mx-m-3}{x+1}=1\)
\(\Rightarrow mx-m-3=x+1\)
\(\Leftrightarrow\left(m-1\right)x=m+4\)
- Với \(m=1\) pt trở thành: \(0=5\) (ktm) \(\Rightarrow\) pt vô nghiệm
- Với \(m=-\dfrac{3}{2}\) pt trở thành:
\(-\dfrac{5}{2}x=\dfrac{5}{2}\Rightarrow x=-1\) (ktm ĐKXĐ) \(\Rightarrow\) pt vô nghiệm
- Với \(m\ne\left\{-\dfrac{3}{2};1\right\}\Rightarrow x=\dfrac{m+4}{m-1}\)
Vậy:
- Với \(m=\left\{-\dfrac{3}{2};1\right\}\) pt vô nghiệm
- Với \(m\ne\left\{-\dfrac{3}{2};1\right\}\) pt có nghiệm duy nhất \(x=\dfrac{m+4}{m-1}\)
pt tương đương với:
(m2 - 1)x = m + 1
(m - 1)(m+1) x = m+ 1
- Với m = -1 , pt trở thành 0x = 0, có vô số nghiệm
- Với m = 1 , pt trở thành 0x = 2, vô nghiệm
- Với m#1 và m#-1 => m + 1 # 0 và m - 1 # 0 => x = 1/(m-1)