K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 1 2021

Do \(OC=\dfrac{1}{2}AC\Rightarrow d\left(O;\left(SCD\right)\right)=\dfrac{1}{2}d\left(A;\left(SCD\right)\right)\)

Kẻ \(AH\perp SD\Rightarrow AH\perp\left(SCD\right)\)

\(\Rightarrow AH=d\left(A;\left(SCD\right)\right)\)

\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AD^2}\Rightarrow AH=\dfrac{SA.AD}{\sqrt{SA^2+AD^2}}=\sqrt{2}\)

\(\Rightarrow d\left(O;\left(SCD\right)\right)=\dfrac{1}{2}AH=\dfrac{\sqrt{2}}{2}\)

23 tháng 1 2021

Trong đáp án không có đáp án này bạn ơi 

3 tháng 3 2018

1: AC=căn a^2+a^2=a*căn 2

=>SC=căn SA^2+AC^2=a*căn 8

SB=căn AB^2+SA^2=a*căn 7

Vì SB^2+BC^2=SC^2

nên ΔSBC vuông tại B

=>SB vuông góc BC

NV
19 tháng 3 2021

Gọi M là trung điểm AD \(\Rightarrow OM\perp AD\Rightarrow OM\perp\left(SAD\right)\)

\(\Rightarrow\widehat{MSO}\) là góc giữa SO và (SAD)

\(SM=\sqrt{SA^2+\left(\dfrac{AD}{2}\right)^2}=2\sqrt{2}\)

\(OM=\dfrac{1}{2}CD=1\)

\(tan\widehat{MSO}=\dfrac{OM}{SM}=\dfrac{1}{2\sqrt{2}}\) \(\Rightarrow\widehat{MSO}\approx19^028'\)

28 tháng 4 2019

Đáp án A

Phương pháp: Cách xác định góc giữa đường thẳng và mặt phẳng:

Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).

Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.

Cách giải: ABCD là hình chữ nhật 

Vì SA ⊥ (ABCD) nên (SC;(ABCD)) = (SC;AC) =  S C A ^

Ta có: AB//CD, CD ⊂ (SCD) => d(B;(SCD)) = d(A;(SCD))

Kẻ AH ⊥ SD, H ∈ SD

Ta có: 

Mà AH ⊥ SD => AH ⊥ (SCD) => d(A;(SCD)) = AH

Tam giác SAD vuông tại A,

30 tháng 4 2019

29 tháng 12 2018

18 tháng 4 2018

Đáp án A

11 tháng 12 2019

Chọn A

Phương pháp:

 

Sử dụng lý thuyết:

Cách giải: