K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2022

Tham khảo:

https://olm.vn/hoi-dap/detail/19696548089.html

8 tháng 4 2022

refer

https://hoc24.vn/cau-hoi/tim-mot-so-chinh-phuong-co-bon-chu-so-biet-rang-hai-chu-so-dau-giong-nhau-va-hai-chu-so-cuoi-giong-nhau.137876568249

22 tháng 1 2021

gọi abcd là là số cần tìm .
đặt abcd=n^2=>1000a+100b+10c+d=n^2 (1)

theo đề bài ta có : ab-cd=1=>10a+b-10c-d=1 (2)
cộng (1) và (2) theo vế ta được:
1010a+101b=n^2+1
=>101(10a+b)=n^2+1
=>n^2+1 chia hết 101=>n^2-100+101 chia hết 101 => n^2-10 chia hết 101 =>(n+10)(n-10) chia hết cho 101 vì n-10 <101 ( loại ) =>n+10 chia hết 101
vì n^2 có 4 chữ số nên 32<n<100=>n=91
vậy số cần tìm là 91^2=8281.

cs j thì k nhá

22 tháng 1 2021

Gọi số có bốn chữ số là : abcd ( 1024 \(\le\)abcd < 1000 )

Do abcd là số chính phương => abcd = \(k^2\left(k\in N\right)\)

Theo đề bài , ta có : 

\(ab-cd=1\)

\(\Rightarrow100.\left(ab-cd\right)=100\)

\(\Rightarrow100ab-100cd=100\)

\(\Rightarrow100ab-100=100cd\)

\(\Rightarrow100ab+cd-100=101cd\)( Cộng hai vế với cd )

Mà \(abcd=100ab+cd=k^2\)

\(\Rightarrow k^2-100=101cd\)

\(\Rightarrow\left(k-10\right).\left(k+10\right)=101cd\)(1)

\(\Rightarrow k-10⋮10\)hoặc \(k+10⋮10\)

Do \(1024\le abcd< 1000\)

\(\Rightarrow32^2\le k^2< 100^2\)

\(\Rightarrow32\le k< 100\Rightarrow\left(k-10,101\right)=1\) (2)

Từ (1) và (2) \(\Rightarrow k+10⋮101\)(*)

Ta có : \(32\le k< 100\)

\(\Rightarrow42\le k+10< 110\)(**)

Từ (*) và (**) \(\Rightarrow k+10=101\)

\(\Rightarrow k=101-10=91\)

\(\Rightarrow k^2=91^2=8281=abcd\)

Vậy abcd = 8281

30 tháng 5 2018

Bài 1: 

Gọi số cần tìm là x; số sau là y2, ta có:

35x = y2

Mà 35 = 5 . 7, x ko thể = 5 hoặc 7

=> Số đó = 35

Bài 2:

Giả sử aabb = n2

<=> a . 103 + a . 102 + a . 10 + b = n2 

<=> 11(100a + b) = n2

<=> n2 chia hết cho 11

<=> n chia hết cho 11

Do n2 có 4 chữ số nên: 32 < n < 100

=> n = 33; n = 44; n = 55; ...; n = 99

Thử n = 88 (TMYK)

=> Số đó là: 7744

Bài 1 :

Gọi số phải tìm là n ,ta có \(135n=a^2\left(a\in N\right)\)hay \(3^3.5.n=a^2\)

Vì số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn nên \(n=3.5.k^2\left(k\in N\right)\)

Vì n là số có 2 chữ số nên \(10\le3.5.k^2\le99\Rightarrow k^2\in\left(1,4\right)\)

- Nếu \(k^2=1\)thì \(n=15\)

-Nếu \(k^2=4\)thì \(n=60\)

Vậy số cần tìm là 15 hoặc 60

Bài 2 :

Gọi số chính phương cần tìm là \(n^2=aabb\left(a,b\in N\right)\)và \(\left(1\le a\le9,0\le b\le9\right)\)

Ta có \(n^2=aabb=1100a+11b=11\left(99a+a+b\right)\left(1\right)\)

\(\Rightarrow\left(99a+a+b\right)⋮11\Rightarrow\left(a+b\right)⋮11\Rightarrow a+b=11\)

Thay \(a+b=11\)vào (1)ta được \(n^2=11\left(99a+11\right)=11^2\left(9a+1\right)\)

\(\Rightarrow9a+1\)phải là số chính phương

a123456789
9a+1101928374655647382

Ta thấy chỉ có \(a=7\)thì \(9a+1=64=8^2\)

Vậy \(a=7\Rightarrow b=4\)và số cần tìm là \(7744=11^2.8^2=88^2\)

Chúc bạn học tốt ( -_- )

22 tháng 1 2018

1/28 chu so a

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi