Cho đường tròn (O) đường kính AB, M là điểm tùy ý thuộc (O) (M không trùng A và B). Trên tia MB lấy điểm N sao cho MA = MN. Vẽ hình vuông AMNP, tia MP cắt (O) tại C. a) Chứng minh C là tâm đường tròn ngoại tiếp tam giác ANB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Dễ thấy C là trực tâm của tam giác IAB nên C, I, H thẳng hàng.
Do tứ giác AICK là hình thang nội tiếp được đường tròn nên là hình thang cân.
Khi đó \(\widehat{IAK}=\widehat{CKA}\Rightarrow\widehat{IAB}=\widehat{NBA}\)
Suy ra tam giác NAB vuông cân tại N nên \(\widehat{NBA}=45^o\).
Ta có các tứ giác CMIN, AMIH nội tiếp được nên \(\widehat{NMH}=\widehat{NMI}+\widehat{HMI}=\widehat{ICN}+\widehat{IAB}=45^o+45^o=90^o\Rightarrow MN\perp MH\).
c) Đề phải là \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}\ge6\).
Đặt \(x=\dfrac{IH}{CH};y=\dfrac{IN}{AN};z=\dfrac{IM}{BM}\left(x,y,z< 1\right)\).
Ta có \(x+y+z=\dfrac{S_{IAB}}{S_{ABC}}+\dfrac{S_{IBC}}{S_{ABC}}+\dfrac{S_{ICA}}{S_{ABC}}=1\).
Lại có \(\dfrac{IH}{CH}=x\Rightarrow\dfrac{CH}{IH}=\dfrac{1}{x}\Rightarrow\dfrac{IC}{IH}=\dfrac{1}{x}-1\).
Tương tự \(\dfrac{IA}{IN}=\dfrac{1}{y}-1;\dfrac{IB}{IM}=\dfrac{1}{z}-1\).
Do đó \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-3\ge_{Svacxo}\dfrac{9}{x+y+z}-3=\dfrac{9}{1}-3=6\).
Vậy ta có đpcm.
a, C K A ^ = C M A ^ = 90 0 => C, K, A, M thuộc đường tròn đường kính AC
b, ∆MBN cân tại B có BA là đường cao, trung tuyến và phân giác
c, ∆BCD có BK ⊥ CD và CN ⊥ BN nên A là trực tâm của ∆BCD => D,A,M thảng hàng
Ta có ∆DMC vuông tại M có MK là trung tuyến nên ∆KMC cân tại K
=> K C M ^ = K M C ^
Lại có K B C ^ = O M B ^ nên
K M C ^ + O M B ^ = K C B ^ + K B C ^ = 90 0
Vậy K M O ^ = 90 0 mà OM là bán kính nên KM là tiếp tuyến của (O)
d, MNKC là hình thoi
<=> MN = CK và CM = CK
<=> ∆KCM cân
<=> K B C ^ = 30 0 <=> AM = R
:)?? CN vuông góc với BN ở câu B đào đâu ra hả bạn, ảo tưởng vừa thôi
c: O là trung điểm của AB
=>OA=OB=R
I là trung điểm của OA
=>OI=OA=0,5R
=>IB=1,5R
ΔIHA đồng dạng với ΔIBM
=>IH/IB=IA/IM
=>IH=3R/8